

Gallai's Path Decomposition in Planar Graphs

PhD defense of Alexandre Blanché

December 13, 2021

Advisors:

Marthe Bonamy, Nicolas Bonichon

Under examination of:

Stéphane Bessy	Reviewer
Fábio Botler	Invited Member
Nadia Brauner	Examinator
Paul Dorbec	Reviewer
Arnaud Pêcher	Examinator

Context of Gallai's conjecture

(1736-1968)

Guthrie, De Morgan (1852)

Can we color the regions of a map with 4 colors, such that two regions that share a border have a different color?

Guthrie, De Morgan (1852)

Can we color the regions of a map with 4 colors, such that two regions that share a border have a different color?

Guthrie, De Morgan (1852)

Can we color the regions of a map with 4 colors, such that two regions that share a border have a different color?

Four-Color Problem

Can we color the **vertices** of a **planar graph** with 4 colors, such that adjacent vertices receive different colors?

Conjecture (Gallai, 1968)

An *n*-vertex connected graph has a decomposition into $\leq \left\lceil \frac{n}{2} \right\rceil$ paths.
Path decomposition

Conjecture (Gallai, 1968)

An *n*-vertex connected graph has a decomposition into $\leq \left| \frac{n}{2} \right|$

$$\left|\frac{n}{2}\right|$$
 paths.

Theorem [B., Bonamy, Bonichon, 2021+]

Gallai's conjecture is true on planar graphs.

Conjecture (Gallai, 1968)
An <i>n</i> -vertex connected graph has a decomposition into $\leq \left\lceil \frac{n}{2} \right\rceil$ paths .
Conjecture (Hajós, 1968)
An <i>n</i> -vertex even graph has a decomposition into $\leq \lfloor \frac{n}{2} \rfloor$ cycles.

Conjecture (Gallai, 1968)
An <i>n</i> -vertex connected graph has a decomposition into $\leq \left\lceil \frac{n}{2} \right\rceil$ paths .
Conjecture (Hajós, 1968)
An <i>n</i> -vertex even graph has a decomposition into $\leq \left\lfloor \frac{n}{2} \right\rfloor$ cycles.

Conjecture (Gallai, 1968)
An <i>n</i> -vertex connected graph has a decomposition into $\leq \left\lceil \frac{n}{2} \right\rceil$ paths .
Conjecture (Hajós, 1968)
An <i>n</i> -vertex even graph has a decomposition into $\leq \left\lfloor \frac{n}{2} \right\rfloor$ cycles.

Conjecture (Gallai, 1968)
An <i>n</i> -vertex connected graph has a decomposition into $\leq \left\lceil \frac{n}{2} \right\rceil$ paths .
Conjecture (Hajós, 1968)
An <i>n</i> -vertex even graph has a decomposition into $\leq \left\lfloor \frac{n}{2} \right\rfloor$ cycles.

Partial results on Gallai's conjecture

(1968-2021)

Theorems

Any connected graph *G* has a decomposition into at most $\mathcal{P}(G)$ paths.

|odd|, |even|: number of vertices of odd, even degree of G

- [Lovász, 1968]: $\mathcal{P}(G) \leq \frac{|\mathsf{odd}|}{2} + |\mathsf{even}| 1$
- [Donald, 1980]: $\mathcal{P}(G) \leq \frac{|\mathsf{odd}|}{2} + \lfloor \frac{3}{4} |\mathsf{even}| \rfloor$
- [Yan, 1998], [Dean, Kouider, 2000]:

$$\mathcal{P}(G) \leq \frac{|\mathsf{odd}|}{2} + \lfloor \frac{2}{3} |\mathsf{even}| \rfloor$$

Reducibility lemma

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

• A: 2 leaves with a common parent

Reducibility lemma

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

- A: 2 leaves with a common parent
- B: 1 leaf with a parent of degree 2

Reducibility lemma

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

- A: 2 leaves with a common parent
- B: 1 leaf with a parent of degree 2

Unavoidability lemma

All trees with $n \ge 3$ vertices **contain** a configuration A or B.

Reducibility lemma

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

- A: 2 leaves with a common parent
- B: 1 leaf with a parent of degree 2

Unavoidability lemma

All trees with $n \ge 3$ vertices **contain** a configuration A or B.

 $\label{eq:contradiction} \textbf{Contradiction} \Rightarrow \textbf{there is no counterexample}$

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration A is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration B is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration B is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration B is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration B is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

• Configuration B is impossible:

In a minimum counterexample to Gallai's conjecture on trees:

Reducibility lemma

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

- A: 2 leaves with a common parent
- B: 1 leaf with a parent of degree 2

Unavoidability lemma

All trees with $n \ge 3$ vertices **contain** a configuration A or B.

Contradiction \Rightarrow there is no counterexample

Reducibility lemma v

A **minimum counterexample** to Gallai's conjecture on trees **does not contain** a configuration:

- A: 2 leaves with a common parent
- B: 1 leaf with a parent of degree 2

Unavoidability lemma easy

All trees with $n \ge 3$ vertices **contain** a configuration A or B.

Contradiction \Rightarrow there is no counterexample

Graph classes on which Gallai's conjecture holds

Even subgraph (Geven = graph induced by vertices of even degree)

- [Lovász, 1968]: $|G_{\text{even}}| \le 1$
- [Favaron, Kouider, 1988]: Each vertex has degree 2 or 4
- [Pyber, 1996]: Geven is a forest
- **[Fan, 2005]**: Each block of G_{even} is triangle-free with maximum degree ≤ 3

Maximum degree Δ

- [Bonamy, Perrett, 2016]: $\Delta \le 5$
- [Chu, Fan, Liu, 2021]: $\Delta = 6$ when there is no 6 6 edge

Sparse graphs

- [Botler, Sambinelli, Coelho, Lee, 2017]: Treewidth ≤ 3
- [Botler, Jiménez, Sambinelli, 2018]: Triangle-free planar graphs 13

Graph classes on which Gallai's conjecture holds

Even subgraph (Geven = graph induced by vertices of even degree)

• [Lovász, 1968]: $|G_{even}| \le 1$

- [Favaron, Kouider, 1988]: Each vertex has degree 2 or 4
- [Pyber, 1996]: Geven is a forest
- [Fan, 2005]: Each block of G_{even} is triangle-free with maximum degree ≤ 3

Maximum degree Δ

- [Bonamy, Perrett, 2016]: $\Delta \le 5$
- [Chu, Fan, Liu, 2021]: $\Delta = 6$ when there is no 6 6 edge

Sparse graphs

- [Botler, Sambinelli, Coelho, Lee, 2017]: Treewidth ≤ 3
- [Botler, Jiménez, Sambinelli, 2018]: Triangle-free planar graphs 13

Stronger conjecture

Natural obstructions to the bound $\left|\frac{n}{2}\right|$:

Odd semi-cliques: cliques on 2k + 1 vertices, delete $\leq k - 1$ edges = graphs with $> \lfloor \frac{n}{2} \rfloor (n - 1)$ edges

Stronger conjecture

Natural obstructions to the bound $\left|\frac{n}{2}\right|$:

Odd semi-cliques: cliques on 2k + 1 vertices, delete $\leq k - 1$ edges = graphs with $> \lfloor \frac{n}{2} \rfloor (n - 1)$ edges

Strong Gallai conjecture [Bonamy, Perrett, 2016]

Every *n*-vertex connected graph either has a decomposition into $\leq \left|\frac{n}{2}\right|$ paths or is an odd semi-clique.

Theorem [B., Bonamy, Bonichon, 2021+]

Every *n*-vertex connected **planar** graph, different from K_3 and K_5^- , can be decomposed into $\leq \lfloor \frac{n}{2} \rfloor$ paths.

Theorem [B., Bonamy, Bonichon, 2021+]

Every *n*-vertex connected **planar** graph, different from K_3 and K_5^- , can be decomposed into $\leq \lfloor \frac{n}{2} \rfloor$ paths.

Corollary

Gallai's conjecture holds on planar graphs.

The proof on planar graphs

(2021+)

Outline of the proof

Main lemma (reducibility)

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

• C_I : 2 vertices of degree ≤ 4

Main lemma (reducibility)

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree ≤ 4
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements*)

* No 3-cut separates two special vertices or two neighbors of a special vertex

Main lemma (reducibility)

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree ≤ 4
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements*)

* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Main lemma (reducibility)

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree ≤ 4
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements*)

* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Contradiction \Rightarrow there is no counterexample

Proof on planar graphs **Part I:** C_I configurations

$G \equiv$ minimum counterexample, *n* vertices

$G \equiv$ minimum counterexample, n vertices

u_1, u_2 special vertices

$G \equiv$ minimum counterexample, *n* vertices

 u_1, u_2 special vertices, **P** a shortest path between them

 $\text{Colors used: } 1 + \left\lfloor \frac{n_1}{2} \right\rfloor + \left\lfloor \frac{n_2}{2} \right\rfloor + \left\lfloor \frac{n_3}{2} \right\rfloor + \left\lfloor \frac{n_4}{2} \right\rfloor + \left\lfloor \frac{n_5}{2} \right\rfloor \leq \left\lfloor \frac{n}{2} \right\rfloor \qquad {}_{17}$

All the half-rules

All the half-rules

All the full-rules

All the full-rules

These rules cover all cases

Lemma

Any C_I configuration can be treated by one of the rules.

K_3/K_5^- strategy

Combining K_3 and K_5^- components with a path of the decomposition

K_3/K_5^- strategy

Combining K_3 and K_5^- components with a path of the decomposition

Main lemma (reducibility)

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree $\leq 4 \checkmark$
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements)

Final lemma (unavoidability)

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Proof on planar graphs **Part II:** C_{II} configurations

Adapting the method to C_{II} configurations

Adapting the method to C_{II} configurations

Theorem [Yu, 1998]

Under certain connectivity conditions^{*}, a planar graph contains a K_4 -subdivision or a C_{4+} -subdivision rooted on 4 given vertices.

- Decomposable into 2 paths
- One end of path on each special vertex

* No 3-cut separates two special vertices

29

29

Patterns

All the patterns

 (C_U)

All the patterns

"Distant problem"

Pre-processing

Step 2: Eliminating some configurations by redirection

(4 similar redirection rules)

Eliminating distant problems:

Distant problems

Eliminating distant problems:

Eliminating distant problems:

Eliminating close problems:

Eliminating close problems:

Eliminating close problems:

All the distant and close configurations

Figure 4.12: Semi-subdivision of D₂

Figure 4.53: Boduction of configuration D_{ϕ}

Figure 4.35: J₁ in a cose where a₁ and u₂ cause distant problems

Figure 4.16: J_2 in a case where the length of $u_1 \sim u_2$ is at least 2

Figure 4.17: Reduction of configuration J

Figure 4.18: Robustion of configuration A. Example of a 2-coloring of

Figure 4.22. J₂ when n₂ and n₄ cause distant problems

. Figure 4.20: Reduction of configuration $J_{\rm d}$

Figure 4.33 Bolactica of configuration R₂, w₀, w₀ may cause distant problems

Figure 4.31: Bolaction of configuration R₂

Figure 4.25: R_{1} when $v_{1}\neq v_{2},\,v_{1}^{\prime}\neq v_{2}^{\prime}$

Figure 4.27: Reduction of configuration $R_2.$ The special vertex u_1 may cause a distant problem on $u_1\sim u_2$ or $u_2\sim u_3$

Figure 4.28: Rewhen we we and us no form Cos configurations

. Figure 4.30: $R_{\rm c}$ when u_2 can set a dictant problem and u_1,u_2 form a $C_{\rm CL}$ configuration Example of a 2 valueing of S

All the distant and close configurations

Figure 4.12: Semi-subdivision of D₂

Figure 4.53: Beduction of configuration D₃

Figure 4.35: Z_i in a cose where u₁ and u₂ cause distant problems

Figure 4.16: J_2 in a case where the length of $u_1 \sim u_2$ is at least 5

Figure 4.17: Reduction of configuration J

Igare 4.18: Hoduction of configuration A. Enample of a 2-coloring of

Figure 4.22. J₂ when n₂ and n₄ cause distant problems

. Figure 4.20: Reduction of configuration $J_{\rm d}$

Figure 4.33: Bolactica of configuration R_{1} , u_{1} , u_{2} may cause distant problems

Figure 4.20: Bolaction of configuration R

Figure 4.27: Reduction of configuration $R_1.$ The special vertex u_1 may cause a distant problem on $u_1\sim u_2$ or $u_2\sim u_3$

Figure 429: R₂ when u₁, u₂ and u₂, u₄ form C₁₂ configurations

Figure 4.22: R_{1} when $l(v_{2}\sim v_{4})\geq 2$ in S

Figure 4.30: R_0 when w_1 causes a distant problem and w_1, w_2 form a C_{2N} configuration Example of a 2-valueing of S

These configurations cover all cases

 K_4 2 vertices involved in a close problem: u_1, u_2 share a r.n. v $C_{4\perp}$ $-v \notin S$ u_1, u_2 share only one r.n.: R_1 u_1, u_2 share a r.n. v' $v \in S$ $v' \notin S: \text{ impossible}$ $v' \in S: \overline{R_2}$ $-u_1, u_2$ share a r.n. $v'; v' \notin S$: see case $v \notin S$ u_1, u_2 share a r.n. $v'; v' \in S$: R_3 3 vertices involved in a close problem: u_1 , u_2 , u_1 , u_2 , $u_1 \neq u_2$: $\overline{R_3, J_4}$ K_A u_1, u_3 share a r.n. v_{13} $\vdash v_{13} \notin S$ $\begin{array}{c} \overset{\circ_{13}}{\smile} \overset{\varphi}{\smile} \overset{\circ}{\smile} \\ & &$ 4 vertices involved $- v_{13} \in S$: Impossible in close problems Two independent close problems each involving two vertices: u_1, u_2 share one r.n. v_{12} ; u_3, u_4 share one r.n. v_{34} Car $v_{12}, v_{34} \notin S: R_6$ $v_{12}, v_{34} \in S: R_3$ One close problem involving all four vertices \vdash P₂: u₁, u₂ share two r.n. v₁₂, v'₁₂: R₇ P_1 : u_1, u_2 share one r.n. v_{12} : R_3

Main lemma (reducibility) v

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree $\leq 4 \checkmark$
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements) \checkmark

Final lemma (unavoidability)

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Proof on planar graphs Part III: There is no minimum counterexample

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

Lemma (unavoidability)

Any planar graph on $n \ge 2$ vertices **contains** a configuration C_I or C_{II} .

Goal: We want to find

- a C_I configuration (2 vertices of degree 4), OR
- 4 vertices of degree 5 in a 4-connected component connected to the rest of the graph with *as few vertices as possible*

4-connected component

Euler's formula (1794)

A connected **planar** graph with vertex set *V*, edge set *E* and face set *F* satisfies: |V| - |E| + |F| = 2

|V| = 6, |E| = 10, |F| = 6, |V| - |E| + |F| = 2

Euler's formula (1794)

A connected **planar** graph with vertex set V, edge set E and face set F satisfies: |V| - |E| + |F| = 2

Corollary

A connected planar graph with vertex set V, edge set E and face set F satisfies:

$$2 \cdot \sum_{f \in F} [d(f) - 3] + \sum_{v \in V} [d(v) - 6] = -12$$

Euler's formula (1794)

A connected **planar** graph with vertex set V, edge set E and face set F satisfies: |V| - |E| + |F| = 2

Corollary

A connected planar graph with vertex set V, edge set E and face set F satisfies:

$$\underbrace{2 \cdot \sum_{f \in F} [d(f) - 3]}_{\geq 0} + \underbrace{\sum_{v \in V} [d(v) - 6]}_{\leq -12} = -12$$

Euler's formula (1794)

A connected **planar** graph with vertex set V, edge set E and face set F satisfies: |V| - |E| + |F| = 2

Corollary

A connected planar graph with vertex set V, edge set E and face set F satisfies:

$$\underbrace{2 \cdot \sum_{f \in F} [d(f) - 3]}_{\geq 0} + \underbrace{\sum_{v \in V} [d(v) - 6]}_{\leq -12} = -12$$

 $\sum_{v \in V} [d(v) - 6] \leq -12 \Rightarrow$ there are *some* small-degree vertices

Euler's formula (1794)

A connected **planar** graph with vertex set V, edge set E and face set F satisfies: |V| - |E| + |F| = 2

Corollary

A connected planar graph with vertex set V, edge set E and face set F satisfies:

$$\underbrace{2 \cdot \sum_{f \in F} [d(f) - 3]}_{\geq 0} + \underbrace{\sum_{v \in V} [d(v) - 6]}_{\leq -12} = -12$$

Outline of the proof

Main lemma (reducibility) 🗸

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree $\leq 4 \checkmark$
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements) \checkmark

Final lemma (unavoidability) v

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Outline of the proof

Main lemma (reducibility) 🗸

A **minimum counterexample** to Gallai's conjecture on planar graphs **does not contain** a configuration:

- C_I : 2 vertices of degree $\leq 4 \checkmark$
- C_{II} : 4 vertices of degree 5 (with additional connectivity requirements) \checkmark

Final lemma (unavoidability) v

All planar graphs on $n \ge 2$ vertices **contain** a configuration C_I or C_{II} .

Contradiction \Rightarrow there is no counterexample

Conclusion and further research

Algorithm

Algorithm

- The proof is **constructive**, except for Yu's construction of a *K*₄-subdivision
 - Apply inductively the reduction rules

[Kawarabayashi, Kobayashi, Reed, 2012]

Polynomial-time complexity

• Proof built around **Euler's formula** |V| - |E| + |F| = 2 \rightarrow can be generalized to higher **genus**

|V| - |E| + |F| = 2 - 2g

• Proof built around **Euler's formula** |V| - |E| + |F| = 2 \rightarrow can be generalized to higher **genus**

|V| - |E| + |F| = 2 - 2g

• Yu's construction of a K₄-subdivision requires planarity

• Proof built around **Euler's formula** |V| - |E| + |F| = 2 \rightarrow can be generalized to higher **genus**

|V| - |E| + |F| = 2 - 2g

- Yu's construction of a K₄-subdivision requires planarity
- Expected growth of the number of cases

Wagner's Theorem [Wagner, 1937]

A graph is **planar** if and only if it has no K_5 -minor and no $K_{3,3}$ -minor.

Theorem [Wagner, 1937]

 K_5 -minor-free graphs are the graphs built through 0-, 1- and 2-sums of V_8 and (3-sums of planar graphs)

0-sum

1-sum

2-sum

3-sum

A K₅-minor-free graph:

A K₅-minor-free graph:

A K_5 -minor-free graph:

Thank you for your attention.

Dominating set reconfiguration

Model: token addition/removal (TAR)

Optimization problem

OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

- Instance : A graph G, two integers k,s, a dominating set D_0 of size $|D_0| \le k$.
- Question : Is there a dominating set D_s of size $|D_s| \le s$, such that $D_0 \stackrel{k}{\longleftrightarrow} D_s$?

