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Context of Gallai’s conjecture
(1736-1968)



Euler (1736): Königsberg Bridge Problem
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Four-Color Problem

Guthrie, De Morgan (1852)
Can we color the regions of a map with 4 colors, such that two
regions that share a border have a different color?

Proved in 1977, as the Four-color theorem [Appel, Haken, 1977]
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Four-Color Problem

Four-Color Problem
Can we color the vertices of a planar graph with 4 colors, such
that adjacent vertices receive different colors?

Proved in 1977, as the Four-color theorem [Appel, Haken, 1977]
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Path decomposition

Path decomposition: a partition of the edges into paths

X colors
|||||||||||

Not a path X
|||||||||||
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Path decomposition

Path decomposition: a partition of the edges into paths

5 colors

|||||||||||

Not a path X
|||||||||||
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Path decomposition

Path decomposition: a partition of the edges into paths
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Path decomposition

Path decomposition: a partition of the edges into paths

4 colors

|||||||||||

Not a path X
|||||||||||
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Path decomposition

Path decomposition: a partition of the edges into paths

4 colors

|||||||||||

3 colors

|||||||||||
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Path decomposition

Conjecture (Gallai, 1968)

An n-vertex connected graph has a decomposition into ≤
⌈
n
2

⌉
paths.

Theorem [B., Bonamy, Bonichon, 2021+]
Gallai’s conjecture is true on planar graphs.
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Related conjectures

Conjecture (Gallai, 1968)

An n-vertex connected graph has a decomposition into ≤
⌈
n
2

⌉
paths.

Conjecture (Hajós, 1968)

An n-vertex even graph has a decomposition into ≤
⌊
n
2

⌋
cycles.
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Lovász’s initial result

Theorem [Lovász, 1968]

An n-vertex graph has a decomposition into ≤
⌊
n
2

⌋
paths and cycles.
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Partial results on Gallai’s
conjecture
(1968-2021)



General bounds

Theorems
Any connected graph G has a decomposition into at most P(G) paths.

|odd|, |even| : number of vertices of odd, even degree of G

• [Lovász, 1968]: P(G) ≤
|odd|

2 +|even| − 1

• [Donald, 1980]: P(G) ≤
|odd|

2 +
⌊

3
4 |even|

⌋
• [Yan, 1998], [Dean, Kouider, 2000]:

P(G) ≤
|odd|

2 +
⌊

2
3 |even|

⌋
8



Example: Gallai’s conjecture holds on trees

Reducibility lemma
A minimum counterexample to Gallai’s conjecture on trees does
not contain a configuration:

• A: 2 leaves with a common parent

• B: 1 leaf with a parent of degree 2

A

B

Unavoidability lemma
All trees with n ≥ 3 vertices contain a configuration A or B.

Contradiction⇒ there is no counterexample
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Example: Gallai’s conjecture holds on trees

In a minimum counterexample to Gallai’s conjecture on trees:

• Configuration A is impossible:

u1 u2

v

RA

Configuration A

• Configuration B is impossible:

u1

u2

RA

Configuration A

RB

Configuration B
Configuration B
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Example: Gallai’s conjecture holds on trees

Reducibility lemma

X

A minimum counterexample to Gallai’s conjecture on trees does
not contain a configuration:

• A: 2 leaves with a common parent

• B: 1 leaf with a parent of degree 2

A B

Unavoidability lemma

easy X

All trees with n ≥ 3 vertices contain a configuration A or B.

Contradiction⇒ there is no counterexample
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Reducibility lemma X
A minimum counterexample to Gallai’s conjecture on trees does
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Algorithm for the trees
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Graph classes on which Gallai’s conjecture holds

Even subgraph (Geven = graph induced by vertices of even degree)

• [Lovász, 1968]: |Geven| ≤ 1

Bound
⌊
n
2

⌋

• [Favaron, Kouider, 1988]: Each vertex has degree 2 or 4

• [Pyber, 1996]: Geven is a forest

• [Fan, 2005]: Each block of Geven is triangle-free with maximum
degree ≤ 3

Maximum degree ∆

• [Bonamy, Perrett, 2016]: ∆ ≤ 5

• [Chu, Fan, Liu, 2021]: ∆ = 6 when there is no 6− 6 edge

Sparse graphs

• [Botler, Sambinelli, Coelho, Lee, 2017]: Treewidth ≤ 3

• [Botler, Jiménez, Sambinelli, 2018]: Triangle-free planar graphs 13
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Stronger conjecture

Natural obstructions to the bound
⌊
n
2

⌋
:

K−5 K5 K7

. . .

Odd semi-cliques: cliques on 2k + 1 vertices, delete ≤ k − 1 edges
= graphs with >

⌊
n
2

⌋
(n− 1) edges

Strong Gallai conjecture [Bonamy, Perrett, 2016]
Every n-vertex connected graph either has a decomposition into
≤
⌊
n
2

⌋
paths or is an odd semi-clique.
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Our contribution

Theorem [B., Bonamy, Bonichon, 2021+]

Every n-vertex connected planar graph, different from K3 and K−5 ,

can be decomposed into ≤
⌊
n
2

⌋
paths.

K3 K−5

Corollary
Gallai’s conjecture holds on planar graphs.
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The proof on planar graphs
(2021+)



Outline of the proof

Main lemma (reducibility)
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4

• CII : 4 vertices of degree 5 (with additional connectivity requirements*)

CI

CII
* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

Contradiction⇒ there is no counterexample

16



Outline of the proof

Main lemma (reducibility)
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4

• CII : 4 vertices of degree 5 (with additional connectivity requirements*)

CI CII
* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

Contradiction⇒ there is no counterexample

16



Outline of the proof

Main lemma (reducibility)
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4

• CII : 4 vertices of degree 5 (with additional connectivity requirements*)

CI CII
* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

Contradiction⇒ there is no counterexample

16



Outline of the proof

Main lemma (reducibility)
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4

• CII : 4 vertices of degree 5 (with additional connectivity requirements*)

CI CII
* No 3-cut separates two special vertices or two neighbors of a special vertex

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

Contradiction⇒ there is no counterexample 16



Proof on planar graphs

Part I: CI configurations



General idea

G ≡ minimum counterexample, n vertices

u1, u2 special vertices⌊
n1
2

⌋ ⌊
n2
2

⌋

⌊
n3
2

⌋
⌊
n4
2

⌋

⌊
n5
2

⌋

Colors used: 1 +
⌊
n1

2

⌋
+
⌊
n2

2

⌋
+
⌊
n3

2

⌋
+
⌊
n4

2

⌋
+
⌊
n5

2

⌋
≤
⌊
n
2

⌋
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CI reduction

When the two special vertices are at distance ≥ 3:
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All the half-rules
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All the half-rules
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CI configurations

When the two special vertices are at distance ≤ 2:
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CI configurations

When the two special vertices are at distance ≤ 2:
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All the full-rules
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All the full-rules
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These rules cover all cases

Lemma
Any CI configuration can be
treated by one of the rules.
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K3/K−
5 strategy

⌊
n2
2

⌋
+ 1

⌊
n4
2

⌋
+ 1

Colors used:

⌊
n
2

⌋
+ 2 −1−1 X
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K3/K−
5 strategy

Combining K3 and K−5 components with a path of the decomposition

X 3 colors X 2 colors

X 4 colors X 3 colors
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Outline of the proof

Main lemma (reducibility)
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4 X

• CII : 4 vertices of degree 5 (with additional connectivity requirements)

CI CII

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

25



Proof on planar graphs

Part II: CII configurations



Adapting the method to CII configurations

CI configurations

2 special vertices of degree ≤ 4

CII configurations

4 special vertices of degree 5

26



Adapting the method to CII configurations

CI configurations

A (shortest) path

CII configurations

K4-subdivision

C4+-subdivision
27



Subdivisions

Theorem [Yu, 1998]
Under certain connectivity conditions*, a planar graph contains a
K4-subdivision or a C4+-subdivision rooted on 4 given vertices.

• Decomposable into 2 paths

• One end of path on each special vertex

* No 3-cut separates two special vertices 28



CII reduction

CN CV

CV

CN
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CV
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CII reduction
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CII reduction

CN CV

CV

CN
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Patterns

Examples of patterns

→ →

CV

→ →

even odd even

CNe

→ →

odd odd odd

CNo

odd odd odd odd→ →CT1b

30



All the patterns

31



All the patterns
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Things that can go wrong

!
a

Internal cycle!

!
a

Internal cycle!

“Close problem”
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Things that can go wrong

!
a

Internal cycle!

“Distant problem”
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Things that can go wrong

!
a

Internal cycle!

“Distant problem”
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Pre-processing

Step 1: Eliminating chords in the subdivision

Step 2: Eliminating some configurations by redirection

CV

C′V

(4 similar redirection rules) 35



Distant problems

Eliminating distant problems:
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Distant problems

Eliminating distant problems:
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Distant problems

Eliminating distant problems:

CV

CVCV

36



Close problems

Eliminating close problems:

CT2NA

CV CV

37



Close problems

Eliminating close problems:

CT2NA

CV CV
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Close problems

Eliminating close problems:

CT2NA

CV CV

37



All the distant and close configurations
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All the distant and close configurations
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These configurations cover all cases
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Outline of the proof

Main lemma (reducibility) X
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4 X

• CII : 4 vertices of degree 5 (with additional connectivity requirements) X

CI CII

Final lemma (unavoidability)
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

40



Proof on planar graphs

Part III: There is no minimum
counterexample



Final proof

Lemma (unavoidability)
Any planar graph on n ≥ 2 vertices contains a configuration CI or CII .

Goal: We want to find

• a CI configuration (2 vertices of degree 4), OR
• 4 vertices of degree 5 in a 4-connected component connected

to the rest of the graph with as few vertices as possible

4-connected component
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Final proof

Lemma (unavoidability)
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Finding a CII configuration

Euler’s formula (1794)
A connected planar graph with vertex set V , edge set E and face
set F satisfies: |V | − |E| + |F | = 2

f1

f2

f3

f4f5 f6

|V | = 6, |E| = 10, |F | = 6, |V | − |E|+ |F | = 2

∑
v∈V [d(v)− 6] ≤ −12 ⇒ there are some small-degree vertices

+ green component connected by ≤ 3 vertices
⇓

If there is no CI configuration,
there is a CII configuration with the right connectivity requirements.
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Outline of the proof

Main lemma (reducibility) X
A minimum counterexample to Gallai’s conjecture on planar graphs
does not contain a configuration:
• CI : 2 vertices of degree ≤ 4 X

• CII : 4 vertices of degree 5 (with additional connectivity requirements) X

CI CII

Final lemma (unavoidability) X
All planar graphs on n ≥ 2 vertices contain a configuration CI or CII .

Contradiction⇒ there is no counterexample
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Main lemma (reducibility) X
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Conclusion and further
research



Algorithm

Algorithm

• The proof is constructive,
except for Yu’s construction of a K4-subdivision

• Apply inductively the reduction rules

→ →

• Treat K3 and K−
5 components by combining them with a path

• Finding a rooted K4/C4+-subdivision: O(n2) algorithm
[Kawarabayashi, Kobayashi, Reed, 2012]

Polynomial-time complexity

44



Possible extensions

How essential is planarity to our proof?

• Proof built around Euler’s formula |V | − |E| + |F | = 2

→ can be generalized to higher genus

|V | − |E| + |F | = 2− 2g

• Yu’s construction of a K4-subdivision requires planarity

• Expected growth of the number of cases

45
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A promising class

Wagner’s Theorem [Wagner, 1937]
A graph is planar if and only if it has no K5-minor and no K3,3-minor.

K5 K3,3

46



A promising class

Theorem [Wagner, 1937]
K5-minor-free graphs are the graphs built through 0-, 1- and
2-sums of V8 and (3-sums of planar graphs)

0-sum 1-sum 2-sum

3-sum
47



A promising class

A K5-minor-free graph:

Thank you for your attention.
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A promising class

A K5-minor-free graph:

Thank you for your attention.
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Dominating set reconfiguration

Model: token addition/removal (TAR)

49



Optimization problem

OPT-DSR (OPTimization variant of Dominating Set Reconfiguration)

• Instance : A graph G, two integers k,s, a dominating set D0

of size |D0| ≤ k.

• Question : Is there a dominating set Ds of size |Ds| ≤ s,
such that D0

k
! Ds ?

k

D|  |

D0

s

?
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