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Résumé

Ce manuscrit s’inscrit dans le domaine informatique de la théorie des graphes, et traite d’une
question posée en 1968 par Tibor Gallai, toujours sans réponse aujourd’hui. Gallai conjectura
que les arêtes de tout graphe connexe à n sommets pouvaient être partitionnées en dn2 e chemins.
Bien que cette conjecture fut attaquée et partiellement résolue au fil des ans, la propriété n’a été
prouvée que pour des classes de graphes très spécifiques, comme les graphes dont les sommets de
degré pair forment une forêt (Pyber, 1996), les graphes de degré maximum 5 (Bonamy, Perrett,
2016) ou les graphes de largeur arborescente au plus 3 (Botler, Sambinelli, Coelho, Lee, 2017).
Les graphes planaires sont les graphes qui peuvent être plongés dans le plan, c’est-à-dire dessinés
sans croisements d’arêtes. C’est une classe bien connue dans la théorie des graphes, et largement
étudiée. Botler, Jiménez et Sambinelli ont récemment confirmé la conjecture dans le cas des
graphes planaires sans triangles. Notre résultat consiste en une preuve de la conjecture sur la
classe générale des graphes planaires. Cette classe est notablement plus générale que celles des
précédents résultats, et de notre point de vue constitue une importante contribution à l’étude
de la conjecture de Gallai. Plus précisément, nous travaillons sur une version plus forte de la
conjecture, proposée par Bonamy et Perrett en 2016, et qui énonce que les graphes connexes
à n sommets peuvent être décomposés en bn2 c chemins, à l’exception d’une famille de graphes
denses. Nous confirmons cette conjecture dans le cas des graphes planaires, en démontrant que
tout graphe planaire connexe à n sommets, à l’exception de K3 et de K−5 (K5 moins une arête),
peut être décomposé en bn2 c chemins. La preuve est divisée en trois parties : les deux premières
montrent le lemme principal de la preuve, qui restreint la structure d’un contre-exemple hypothé-
tique ayant un minimum de sommets, et la troisième partie utilise ce lemme pour montrer qu’un
tel contre-exemple n’existe pas.

Mots-clés : Décomposition de graphe, Chemin, Conjecture de Gallai, Graphe planaire



Abstract

This thesis falls within the theoretical computer science field of graph theory, and deals with a
question asked in 1968 by Tibor Gallai, still unanswered as of today. Gallai conjectured that
the edges of any connected graph with n vertices can be partitioned into dn2 e paths. Although
this conjecture has been tackled and partially solved over the years, the property has only been
proven on very specific graph classes, which include graphs in which the vertices of even degree
form a forest (Pyber, 1996), graphs of maximum degree 5 (Bonamy, Perrett, 2016) or graphs of
treewidth at most 3 (Botler, Sambinelli, Coelho, Lee, 2017). The planar graphs are the graphs
that can be embedded in the plane, or drawn without edges crossing. The class of planar graphs
is well-known in graph theory and has been thoroughly studied. Botler, Jiménez and Sambinelli
recently confirmed the conjecture on triangle-free planar graphs. Our result consists in a proof
of the conjecture on the whole class of planar graphs. This class is significantly broader and
more general than those of previous results, and in our opinion constitutes an important contri-
bution to the study of Gallai’s conjecture. More precisely, we work on a stronger variant of the
conjecture, proposed by Bonamy and Perrett in 2016, which states that all connected graphs on
n vertices could be decomposed into bn2 c paths, with the exception of a family of dense graphs.
We confirm this conjecture in the case of planar graphs, by showing that every connected planar
graph on n vertices except K3 and K−5 (K5 minus one edge) can be decomposed into bn2 c paths.
The proof is divided into three parts: the first two show the main lemma of the proof, which
restricts the structure of a hypothetical vertex-minimum counterexample to the statement, while
the third part uses the main lemma to show that such a counterexample does not exist.

Keywords: Graph decomposition, Path, Gallai’s conjecture, Planar graph.
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Introduction (en français)

Cette thèse s’inscrit dans le domaine de la théorie des graphes. Un graphe est défini
par son ensemble de sommets, ou nœuds, et d’arêtes, ou liens entre ces nœuds. La
première mention d’un graphe date de 1736, lorsque le mathématicien suisse Leonhard
Euler s’intéressa au problème des ponts de Königsberg. La Pregolia est un fleuve qui
coule à travers la ville de Königsberg en Prusse (aujourd’hui Kaliningrad en Russie), et la
sépare en quatre régions connectées à l’époque par sept ponts, comme illustré en Figure 1.
Nombreux observateurs se demandaient alors s’il était possible de concevoir un parcours
de la ville qui empruntait chaque pont exactement une fois.

Figure 1: Les sept ponts de Königsberg

Euler eut l’intuition que la position exacte de chaque pont n’était pas importante au
problème, et il se concentra uniquement sur la structure sous-jacente du réseau. Appelons
tour une suite d’arêtes dans laquelle deux arêtes successives touchent un même sommet.
Euler déduit alors que le problème consistait uniquement à trouver un tour qui contient
toutes les arêtes du graphe de la Figure 2.

Figure 2: Le graphe représentant la structure de l’instance. Chaque sommet représente
une région, et chaque arête un pont.
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Un sommet est pair s’il touche un nombre pair d’arêtes, et impair sinon. Euler observa
qu’à chaque fois qu’un tour entre dans un sommet par une arête, il doit en sortir par une
autre, à l’exception du premier et du dernier sommet du tour. Ainsi, pour qu’un tel tour
existe, chaque sommet à l’exception des extrémités doit être pair. Puisque notre graphe
possède quatre sommets impairs, Euler avait prouvé que le problème ne possédait pas de
solution [28].

Ce raisonnement s’avéra d’une importance considérable dans l’histoire des mathéma-
tiques, puisqu’il introduit le domaine de la théorie des graphes, et anticipa le développe-
ment de la topologie. Un tour qui contient toutes les arêtes du graphe est aujourd’hui
appelé chemin eulérien (ou cycle eulérien si les deux extrêmités sont un même point) [4].

Les graphes sont très utiles pour extraire les propriétés intrinsèques d’une instance
d’un problème concret, afin de les abstraire et de les modéliser. Considérons le “problème
jouet” suivant en guise de première exemple. Nous organisons un mariage, et nous devons
assigner chaque invité à une table. Pour éviter les incidents, si deux invités ne s’apprécient
pas, nous souhaiterions les placer à deux tables différentes. Nous pouvons observer que
cette condition est satisfaite si nous n’avons qu’une personne par table. De plus, dès
lors que deux personnes ne s’apprécient pas, une seule table ne suffit pas à satisfaire la
contrainte. Quel est donc le nombre minimum de tables requises pour notre ensemble
d’invités ?

Ici, la seule information pertinente est le statut de la relation entre toutes les paires
d’invités, et nous pouvons donc modéliser le problème par un graphe dont les sommets
représentent les invités, et où une arête entre deux sommets signifie que les invités cor-
respondants ne s’apprécient pas. Pour trouver le nombre minimum de tables, il nous
faut résoudre le problème appelé problème de coloration de sommets [35] : assigner à
chaque sommet d’un graphe une couleur, de telle sorte que deux sommets reliés par une
arête n’aient pas la même couleur, et cela en utilisant le moins de couleurs possibles. La
Figure 3 montre un exemple d’instance du problème de répartition des invités, encodé
en tant qu’instance du problème de coloration de sommets, avec une solution à 3 tables
(représentées par 3 couleurs). C’est une solution optimale, car on peut observer qu’avec
seulement 2 tables, deux personnes parmi Jacques, Jean et Sylvie se seraient retrouvés à
la même table, alors qu’aucun d’entre eux n’apprécie les deux autres.

Jacques Marie Robert

Jean Nathalie Michel

Sylvie Catherine

Figure 3: Le graphe représentant les relations entre les invités : une arête indique que
deux invités ne s’apprécient pas, et les couleurs représentent les tables.

Les graphes peuvent donc être utilisés pour modéliser la structure d’un réseau réel,
comme dans le cas du problème des ponts de Königsberg, ou pour modéliser les in-
teractions et relations entre objets, comme pour le problème des invités. Les graphes
sont aujourd’hui utilisés dans la plupart des domaines scientifiques, comme l’explique
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le mathématicien hongrois László Lovász, lauréat du Prix Abel 2021, dans son discours
d’acceptation :

“Nous réalisons à présent que la plupart des structures et systèmes que nous cherchons
à comprendre ont un réseau ou graphe sous-jacent, des ordinateurs à internet, des commu-
nautés écologiques au cerveau, des réseaux sociaux aux épidémies, la théorie des graphes
est en train de devenir le modèle mathématique pour ce nouveau paradigme.”

Les graphes sont en effet utilisés pour modéliser une variété de réseaux, tels les
réseaux routiers, ou des ensembles d’ordinateurs interconnectés, ainsi que pour résoudre
des problèmes associés, comme trouver le plus court chemin entre deux nœuds [36]. En
physique, les molécules possèdent une structure de graphe, avec des atomes reliés par
des liaisons covalentes, et leurs propriétés peuvent être étudiées grâce à la théorie des
graphes [15]. Les graphes sont utilisés dans des domaines aussi variés que la modélisa-
tion 3D, avec l’utilisation de maillages [3]; en biologie, où ils permettent de modéliser les
intéractions entre protéines [50]; en linguistique, par le biais des arbres syntaxiques [17];
en sciences sociales, où les graphes sont utilisés pour mesurer l’influence d’un individu
dans un groupe [63]; ou en science des données, grâce aux bases de données orientées
graphes [81]. L’avènement des réseaux sociaux au cours des dernières décennies a encore
renforcé l’importance de la théorie des graphes, avec des applications dans les algorithmes
de recommandation [62].

La théorie des graphes est fortement reliée à d’autres domaines de l’informatique,
comme l’algorithmique et la théorie de la complexité. Nombre de problèmes théoriques
de graphes ont été étudiés en profondeur, comme le problème du voyageur de commerce,
où l’on cherche le tour le plus court qui visite tous les sommets d’un graphe et retourne
au sommet de départ, ou le problème de l’ensemble indépendant, où l’on cherche dans
un graphe le plus grand ensemble de sommets qui ne possède aucune arête interne. Ces
deux problèmes, ainsi que le problème de coloration de sommets cité précédemment, ont
la particularité d’être NP-difficiles [39], ce qui signifie grossièrement que le calcul par un
ordinateur d’une solution exacte à l’un de ces problèmes représente un défi, y compris
pour des instances de petite taille.

En plus du problème de coloration de sommets, de nombreuses variantes de problèmes
de coloration ont été étudiées au cours des deux derniers siècles. Par exemple, le problème
de coloration par liste, qui est similaire au problème de coloration de sommets, où cette
fois les couleurs des sommets sont choisies parmi une liste de candidats assignée à chaque
sommet. Le but est ici de trouver la plus petite taille commune des listes qui garantit que
le graphe possède une bonne affectation de couleurs (avec des couleurs différentes pour
des sommets reliés par une arête) quelque soit le contenu des listes. Avec le problème de
coloration d’arêtes (voir la Figure 4a), les couleurs sont cette fois attribuées aux arêtes du
graphe, de manière à ce que deux arêtes ayant une extrémité en commun soient assignées à
deux couleurs différentes, et le but est encore une fois de minimiser le nombre de couleurs
utilisées pour colorer toutes les arêtes. Un autre exemple de problème de coloration est le
problème de coloration totale (voir la Figure 4b), où nous colorons à la fois les sommets et
les arêtes, de telle manière à ce qu’une même couleur n’est pas attribuée à deux sommets
reliés par une arête, ou à deux arêtes ayant une extrémité en commun, ou à une arête et
l’une de ses extrémités [35].

Les problèmes de coloration appartiennent à une famille plus large de problèmes de
décomposition, qui visent à partitionner un graphe en structures plus petites et plus sim-
ples. Le problème de coloration de sommets est équivalent à partitionner les sommets du
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(a) Coloration d’arêtes (b) Coloration totale

Figure 4: Instances de coloration d’arêtes et de coloration totale en 4 couleurs

graphe en ensembles indépendants, et le problème de coloration d’arêtes consiste à parti-
tionner les arêtes du graphe en couplages, c’est-à-dire en ensembles d’arêtes disjointes. De
nombreux problèmes de ce type ont été étudiés, tels le problème consistant à décomposer
un graphe en cliques, i.e. en sous-graphes dont tous les sommets sont reliés deux-à-deux
par une arête; ou en étoiles, c’est-à-dire en sous-ensembles d’arêtes ayant exactement une
extrémité en commun. Un chemin dans un graphe est un tour, donc une séquence d’arêtes
consécutives, tel que chaque sommet du tour n’est touché qu’une seule fois, comme en
Figure 5a. On dit qu’un graphe est connexe si pour toute paire de sommets du graphe
il existe un chemin ayant ces deux sommets pour extrémités. Dans le problème de dé-
composition que l’on étudie dans ce manuscrit, nous cherchons une partition des arêtes
du graphe en chemins, que nous appelons une décomposition en chemins. De manière
équivalente, une décomposition en chemins est une coloration des arêtes d’un graphe, de
telle manière à ce que les arêtes ayant la même couleur forment un chemin. La Figure 5b
propose une décomposition du graphe en 4 chemins. Le même graphe peut également être
décomposé en 3 chemins, comme dans la Figure 5c, mais pas moins. En effet, le degré (le
nombre d’arêtes incidentes) du sommet central est de 6, et ses arêtes incidentes requièrent
donc au moins 3 chemins pour être couvertes. Nous pouvons également observer que dans
une décomposition en chemin, chaque sommet impair du graphe doit être l’extremité d’au
moins un chemin. Le graphe en Figure 5 contient 6 sommets impairs, et ne peut donc pas
être décomposé en moins de 3 chemins.

(a) Un chemin, en rouge (b) Une décomposition
en 4 chemins

(c) Une décomposition
en 3 chemins

Figure 5: Un chemin et deux décompositions en chemins
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En 1968, le mathématicien hongrois Tibor Gallai posa la question suivante [58] : étant
donné un graphe connexe à n sommets, est-il possible de trouver une décomposition en
chemins de ce graphe en au plus dn2e chemins ? Par exemple, c’est le cas du graphe en
Figure 5, puisqu’il contient 8 sommets et peut être décomposé en 3 chemins. Cependant,
malgré la simplicité apparente de l’énoncé, sa preuve n’a toujours pas été trouvée après
un demi-siècle. La question est connue comme la conjecture de Gallai de décomposition
en chemins, et l’objet de la contribution présentée dans ce manuscrit.

Bien que la résolution du problème pour tous les graphes semble difficile, nous pouvons
observer que restreindre le problème à des familles de graphes plus spécifiques peut dans
certains cas le rendre plus facile. La propriété est évidemment satisfaite pour les graphes
constitués d’un seul chemin, ou d’un seul cycle (un tour dans lequel les deux extrémités
sont le même sommet). Depuis son énoncé, la conjecture a été résolue pour de nombreuses
familles de graphes, telles les graphes ayant au plus un sommet pair [58], ou récemment
les graphes dont tous les sommets ont un degré d’au plus 5 [6]. Nous avons prouvé un
résultat similaire, en restreignant le problème à une famille de graphe ayant des propriétés
utiles, de sorte à apporter une nouvelle solution partielle à la conjecture.

Une preuve nous semblait réalisable pour les graphes planaires, une famille bien connue
de graphes ayant une grande variété d’applications. Un graphe est planaire s’il peut être
plongé dans le plan, c’est-à-dire s’il peut être dessiné dans le plan de sorte que ses arêtes
ne se croisent pas. Les graphes des Figures 3, 4b et 5 constituent des exemples de graphes
planaires, mais ce n’est pas le cas du graphe de la Figure 4a (connu comme le graphe de
Petersen) pour lequel il est impossible de déplacer les sommets ou de courber les arêtes
pour plonger le graphe dans le plan.

Il est naturel de considérer la famille des graphes planaires, en premier lieu car un
graphe plongé dans le plan est bien plus facile à appréhender pour un humain qu’un
graphe dessiné avec des arêtes se recouvrant. Les applications pratiques des graphes
planaires incluent la conception de circuits imprimés [14], pour empêcher des recouvre-
ments de pistes conductrices, ou celle des routes aériennes [32]. La classe est surtout
connue pour le théorème des quatre couleurs, qui établit que seules 4 couleurs sont néces-
saires pour colorier les régions d’une carte de manière à ce que deux régions adjacentes
ne partagent pas une même couleur; ou, de manière équivalente, qu’il y a toujours une
solution à 4 couleurs au problème de coloration de sommets sur les graphes planaires.
Conjecturé en 1852, sa preuve [1, 2] en 1976 était unique en son genre, nécessitant un
ordinateur pour résoudre un grand nombre de sous-cas techniques.

Nous contribuons à la recherche sur la conjecture de Gallai en prouvant que celle-ci
est vraie sur la famille des graphes planaires.

Theorem (Blanché, Bonamy, Bonichon [5], 2021+). Tout graphe planaire connexe à n
sommets possède une décomposition en au plus dn2e chemins.

La classe des graphe planaires est l’une des plus naturelles et générales sur lesquelles la
conjecture a été confirmée, et représente une étape importante sur la route d’une complète
résolution. De plus, nous expliquons dans le Chapitre 2 que nous prouvons en réalité une
version légèrement plus forte de la conjecture, dans les cas des graphes planaires, en
montrant que nous pouvons atteindre la borne plus fine de bn2c, à l’exception de deux
graphes de petite taille.

La méthode que nous avons utilisée pour démontrer ce théorème est courante ([6, 9, 72,
82]) : nous commençons par supposer que le théorème est faux, ce qui implique qu’il doit
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exister des graphes planaires qui ne satisfont pas la propriété. Parmi ces contre-exemples,
nous en considérons un qui contient un nombre minimum de sommets. Pour prouver
notre théorème, il suffit de montrer que ce contre-exemple minimum n’existe pas, ce que
nous réalisons en démontrant que son existence mène à une contradiction. L’essentiel
de la preuve consiste à prouver que certaines structures ne peuvent pas apparaître dans
notre graphe, en raison de sa nature de contre-exemple minimum. Enfin, une preuve plus
succincte montre que le graphe doit en réalité contenir l’une de ces structures. Les deux
résultats étant en contradiction, nous pouvons en déduire que le contre-exemple minimum
que nous avons considéré n’existe pas.

Le manuscrit présente la preuve du théorème. Les notions et définitions importantes
sont présentées dans le Chapitre 1, tandis que le Chapitre 2 résume l’histoire de la con-
jecture ainsi que les nombreux résultats partiels obtenus depuis les cinquante dernières
années. Le Chapitre 3 consiste en une preuve du premier lemme, qui limite le nombre
de sommets de degré au plus 4 dans notre contre-exemple à au plus un. La preuve de ce
lemme suppose l’existence de deux tels sommets, et montre pour chaque cas qu’une telle
structure contredit la propriété que possède le graphe d’être un contre-exemple minimum
à la conjecture de Gallai. Le Chapitre 4 propose un deuxième lemme, qui généralise
les idées du premier, et qui limite le nombre de sommets de degré 5. Finalement, nous
concluons notre preuve du théorème en montrant dans le Chapitre 5 que l’existence d’un
contre-exemple minimum avec une telle structure produit une contradiction.
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Introduction

This thesis falls within the domain of graph theory. A graph is defined by its set of vertices,
or nodes, and edges, or links between these nodes. The first mention of a graph dates
back to 1736, when Swiss mathematician Leonhard Euler took interest in the Königsberg
bridge problem. The city of Königsberg in Prussia (now Kaliningrad, Russia) contained
four land masses connected at the time by seven bridges across the Pregel River, as
depicted in Figure 6, and many had started asking whether one could design a walk
through the city that crossed each bridge exactly once.

Figure 6: The seven bridges of Königsberg

Euler had the intuition that the exact position of each bridge was irrelevant to the
problem, and he only focused on the underlying structure of the network. We call walk a
sequence of edges in which two consecutive edges touch a common vertex. Euler deduced
that the problem only consisted in finding a walk that contains all the edges from the
graph of Figure 7.

Figure 7: The graph representing the structure of the instance. Each vertex represents a
land mass, and each edge a bridge.

A vertex is even if it touches an even number of edges, and odd otherwise. Euler
observed that each time the walk enters a vertex through an edge, it has to go out
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through another edge, except for the last vertex of the walk. Hence, for such a walk to
exist, each vertex except the two endpoints have to be even. Since the graph in question
has four odd vertices, Euler had proven that the problem had no solution [28].

This reasoning would prove to be of great significance in the history of mathematics,
by introducing the field of graph theory and foreseeing topology. A walk going through all
the edges of a graph is now called an Eulerian path (or Eulerian cycle if the two endpoints
are the same vertex) [4].

Graphs are helpful to extract the intrinsic properties of an instance of a practical
problem, and are thus often used to abstract and model such problems. As a first example,
let us consider the following “toy problem”. We are organizing a wedding, and would like
to assign each guest to a table. To prevent incidents, if two guests dislike each other,
we would like to assign them to different tables. We can observe that the condition is
satisfied if we only have a single guest per table, and as long as two guests dislike each
other, one table is not sufficient. Then what is the minimum number of tables required
to satisfy the condition for a given set of guests?

The only relevant information here is the status of the relationship between each pair
of guests, hence we can model this problem with a graph in which each vertex represents
a guest, and there is an edge between two vertices if the associated guests dislike each
other. The problem of finding the minimum number of tables thus consists in solving the
so-called vertex coloring problem [35]: assigning to each vertex of a graph a color, in such
a way that two vertices linked by an edge are assigned different colors, all while using
the smallest number of colors. Figure 8 shows an example of an instance of the guest
problem encoded as an instance of the vertex coloring problem, and a solution with 3
tables (represented by 3 colors). This is an optimal solution, as we can observe that with
only 2 tables, two of James, John and Jennifer would end up at the same table, despite
disliking each other.

James Mary Robert

John Linda Michael

Jennifer Patricia

Figure 8: The graph representing the relationships between the guests: an edge indicates
that the two associated guests hate each other. The colors represent the tables.

Graphs can thus be used to model the structure of a concrete network, like for the
Königsberg bridge problem, or to model the interactions and relations between objects,
such as for the guest problem. They are in fact used in most scientific domains nowadays,
as explained by 2021 Abel Prize recipient László Lovász in his acceptance speech:

“We now realize that most of the structures and systems we want to understand have an
underlying network or graph, from computer to the internet, from ecological communities
to the brain, from social networks to epidemics, graph theory is becoming the mathematical
background for this new paradigm.”
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(a) Edge coloring (b) Total coloring

Figure 9: Instances of edge coloring and total coloring with 4 colors

Graphs are indeed used to model a variety of networks, like road networks or sets
of interconnected computers, and to solve related problems like finding a shortest route
between two nodes [36]. Molecules in physics have a graph structure, with atoms linked
by covalent bonds, and their properties can be studied with the use of graph theory [15].
Graphs are used in fields as varied as 3D modelling, throught the use of meshes [3]; bi-
ology, where they help model the interactions between proteins [50]; linguistics, through
parse trees [17]; social sciences, with graphs being used to measure the influence of an
individual within a group of people [63]; or data science, with graph databases [81]. The
advent of social networks in the last decades only reinforced the need for graph theory,
with applications in recommendation algorithms [62].

Graph theory is closely related to other domains of computer science, such as algo-
rithmics and complexity theory. Many theoretical graph problems have been thoroughly
studied, like the travelling salesman problem, which asks for the shortest walk that visits
all the vertices of the graph and goes back to the first one, or the independent set problem,
which asks for the biggest subset of vertices that does not contain any edge in a given
graph. These two problems, as well as the aforementioned vertex coloring problem, have
the particularity of being NP-hard [39], which roughly means that the computation of an
exact solution by a computer is challenging, even on relatively small instances.

Although the vertex coloring problem is the most famous, many variants of coloring
problems have been studied in the last centuries. For instance the list coloring problem,
which is similar to the vertex coloring problem, except that the color of each vertex must
be chosen among a list of candidates assigned to each vertex. The goal is here to find
the smallest common size of the lists, in order for the graph to have a correct assignment
(with different colors for vertices linked by an edge) no matter the content of the lists.
The edge coloring problem (see Figure 9a) features a different kind of graph coloring,
where the colors are assigned to the edges, and the goal is to find the minimum number of
colors needed to color all the edges in such a way that two edges incident with the same
vertex are not assigned the same color. Another example is total coloring (see Figure 9b),
in which both the vertices and the edges are colored, in such a way that the same color
is not assigned to two vertices linked by an edge, to two edges incident with the same
vertex, or to a vertex and one of its incident edges [35].

Coloring problems belong to a larger family of decomposition problems, which aim
at partitioning a graph into smaller, simpler structures. The vertex coloring problem is
equivalent to partitioning the vertices of a graph into independent sets, and the edge
coloring consists in partitioning the edges of a graph into matchings, i.e. subsets of
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(a) A path, in red (b) A path decomposition
into 4 paths

(c) A path decomposition
into 3 paths

Figure 10: A path, and two path decompositions

pairwise non-incident edges. Many graph decomposition problems have been studied:
decomposing a graph into cliques, i.e. subgraphs containing all possible inner edges, or
into stars, subsets of edges having exactly one end in common, for example. A path in
a graph is a walk, so a consecutive sequence of edges, such that each vertex of the walk
is touched exactly once, as in Figure 10a. We say that a graph is connected if any two
vertices are the endpoints of a path in the graph. The decomposition problem we study in
this thesis asks for a partition of the edges into paths, or path decomposition. Equivalently,
a path decomposition of a graph is a coloring of its edges in such a way that edges with
the same color form a path. Figure 10b features a graph decomposed into 4 paths. The
same graph can also be decomposed into only 3 paths, as in Figure 10c, but not less.
Indeed, the central vertex has a degree (a number of incident edges) of 6, so its incident
edges require at least three paths to be covered. Let us also observe that each odd vertex
must be the end of at least one path. The graph of Figure 10 contains 6 odd vertices,
hence cannot be decomposed into less than 3 paths.

In 1968, Hungarian mathematician Tibor Gallai asked the following question [58]:
given a connected graph with n vertices, is it always possible to find a path decompo-
sition of the graph into dn2e paths? For example, this is the case with the graph on
Figure 10, since it contains 8 vertices and can be decomposed into 3 paths. However, de-
spite the apparent simplicity of the statement, its proof is yet to be found half a century
later. This question is known as Gallai’s path decomposition conjecture, and is the subject
of the contribution presented along this thesis.

Even though solving the problem on all graphs seems difficult, we can observe that
restricting it to specific families of graphs can in certain cases make it easier. The property
is clearly satisfied by graphs made up of one path, or one cycle (a walk in which the two
endpoints are the same vertex). Since its first mention, the conjecture has been solved
on many graph families, like graphs with at most one even vertex [58], or recently graphs
where each vertex has a degree of at most 5 [6]. We proved a result of the same kind,
by restricting the problem to a family of graphs with helpful properties, in order to bring
another partial solution to the conjecture.

The graphs which emboldened us were planar graphs, a well-known graph family with
a wide range of applications. A graph is planar if it can be embedded in the plane, i.e. if
it can be drawn in the plane in such a way that no two edges cross each other. Examples
of planar graphs include the graphs in Figures 8, 9b and 10, but it is not the case for the
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graph in Figure 9a (known as the Petersen graph) for which there is no way of moving
the vertices or bending the edges to embed it in the plane.

The family of planar graphs is natural to consider, firstly because a graph embed-
ded in the plane is much easier for a human to apprehend than a graph drawn with
multiple overlapping edges. Applications of planar graphs include the design of printed
circuit boards [14], to prevent conductive tracks from overlapping, or the design of flight
paths [32]. The class is most notably known for the four-color theorem, which states that
only 4 colors are needed to color the regions of a map in a way that no two adjacent
regions share the same color, or equivalently that there is always a solution with 4 colors
to the vertex coloring problem on planar graphs. Conjectured in 1852, its proof [1, 2] in
1976 was the first of its kind, requiring a computer to solve a vast number of technical
cases.

We contribute to the research on Gallai’s conjecture by proving that it holds on the
family of planar graphs.

Theorem (Blanché, Bonamy, Bonichon [5], 2021+). Any connected planar graph with n
vertices has a path decomposition into at most dn2e paths.

The class of planar graphs is one of the most natural and wide classes on which the
conjecture was confirmed, and represents a significant milestone on the path toward its
full resolution. In addition, we explain in Chapter 2 that we actually prove a slightly
stronger version of the conjecture in the case of planar graphs, by showing that we can
reach the sharper bound of bn2c, with the exception of two small graphs.

The method we used to prove this theorem is a fairly common one ([6, 9, 72, 82]):
we start by assuming that our theorem is false, which implies that there must exist some
planar graphs that do not satisfy the property. Among these counterexamples, we consider
one that contains the smallest number of vertices. To prove our theorem, it suffices to show
that this minimum counterexample does not exist, which we do by demonstrating that its
existence leads to a contradiction. The bulk of the proof consists in proving that certain
structures cannot appear in our minimum counterexample due to its properties. Finally,
a quick proof shows that the graph must in fact contain one of these forbidden structures.
The two results being contradictory, we are able to deduce that the counterexample does
not exist.

This thesis lays out our proof of the theorem. The important notions and definitions
are presented in Chapter 1, while Chapter 2 summarizes the history of the conjecture and
the multiple partial results that were proven in the past 50 years. Chapter 3 consists in
the proof of a first lemma, that limits the number of vertices of degree at most 4 in our
counterexample to at most one. The proof of this lemma assumes the existence of two
such vertices, and shows in each case that such a structure contradicts the property of
the graph being a minimum counterexample to Gallai’s conjecture. Chapter 4 features a
second lemma, that generalizes the ideas of the first one, and which limits the number
of vertices of degree 5. Finally, we conclude our proof of the theorem by showing in
Chapter 5 that the existence of a minimum counterexample with such a structure yields
a contradiction.
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Chapter 1

Preliminaries

The following chapter introduces the basic definitions around graphs, path and cycle
decompositions, as well as connectivity and planarity-related notions. We finally define
some classical graph classes, which are mentioned throughout this thesis and especially
in the state of the art of Chapter 2.

1.1 Basic definitions on graphs
Graphs. A graph is an abstract object made up of a set of vertices, corresponding to
points in space or nodes in a network, and a set of edges, or links between pairs of vertices.
We denote a graph G with vertex set V and edge set E by G = (V,E). An edge between
two vertices u, v is denoted by uv, and we say that u, v are the ends of uv. The graphs
that we consider throughout this thesis are finite, i.e. contain a finite number of vertices,
and simple, i.e. each edge of the graph connects two distinct vertices, and there is at most
one edge between any two vertices. Hence, the number of edges in a graph with n vertices
is at most

(
n
2

)
= n(n−1)

2
. We may denote V,E by V (G), E(G) respectively.

These graphs are called undirected. In a directed graph, the edges are called arcs, and
the two ends of each arc are ordered. This thesis deals almost exclusively with undirected
graphs, and directed graphs are only mentioned in the state of the art of Chapter 2.

For the rest of the definitions, let us fix a graph G = (V,E).

Adjacency. In a given graph, we say that two vertices u, v are adjacent (or that u is
adjacent to v, or vice-versa) if the graph contains the edge uv, and in this case we say that
the edge uv is incident with u and v. In this case, we say that v is a neighbor of u, and vice-
versa. Given a subset X ⊆ V of vertices, we denote by N(X) = {v ∈ V | ∃u ∈ X, uv ∈ E}
the neighborhood of X, i.e. the set of vertices that are adjacent to u.

Incident edges. We say that two edges uv, uw sharing an end u are incident. A match-
ing is a subset of pairwise non-incident edges in a graph.

Complement. The complement of G is the graph G = (V ′, E ′) defined by V ′ = V and
E ′ = {uv | u, v ∈ V, u 6= v, uv /∈ E}.

Subgraphs. The subgraph of G induced by a subset X ⊆ V is the graph with vertices
X and edges {uv ∈ E | u, v ∈ X}, and is denoted by G[X]. Equivalently, it is the graph
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formed by removing all the vertices in V \ X and their incident edges, but keeping all
edges with both ends in X. We say that G[X] is an induced subgraph of G.

More generally, a graph G′ = (V ′, E ′) is a subgraph of G if V ′ ⊆ V and E ′ ⊆ (V ′ ×
V ′) ∩ E; equivalently, G′ is obtained from G[V ′] by possibly deleting some edges.

Given a graph H, we say that G is H-free if H is not an induced subgraph of G.

Edge contractions, minors. The graph Ge = (Ve, Ee) is obtained by contracting an
edge e = uv of G if Ve = V \ {u, v} ∪ {w}, with w being a new vertex not present in
V , and Ee = (E ∩ (V ′ × V ′)) ∪ {wx | ux ∈ E or vx ∈ E}. In other words, the graph
Ge is obtained by merging the vertices u and v into a new one w, and linking w to the
neighbors of u and to the neighbors of v. The graph Ge thus has fewer vertices than G,
but is not a subgraph of G.

A graph is a minor of G if it is obtained from G by deleting vertices and edges, and
contracting edges. Similarly to induced subgraphs, given a graph H, we say that G is
H-minor-free if H is not a minor of G.

Cliques, independent sets. A complete graph is a graph on n vertices that contains
the n(n−1)

2
possible edges between these vertices. Figure 1.2a represents a complete graph

on 5 vertices. A clique of a graph G is a complete subgraph of G.
A subset V ′ ⊆ V of vertices of a graph G is an independent set of G if G[V ′] has no edge.

Degree. The degree of a vertex u is its number of incident edges in G, and is denoted
by dG(u). A vertex with degree i in G is called an i-vertex of G. In particular, the proofs
in Chapters 3 and 4 heavily use the parity of the degree of the vertices.

A graph is (i-)regular if all its vertices have the same degree (i).

1.2 Paths and cycles
Walks. A walk in G is a finite sequence of distinct edges of G, in which each pair
of consecutive edges shares one end. Let W be the walk (v1v2, v2v3, . . . , vk−1vk), that
we denote by W = (v1, v2, . . . , vk). In this case, we say that the vertices v1, v2, . . . , vk
belong to W , and they are not necessarily distinct. We write V (W ) = {v1, v2, . . . , vk} and
E(W ) = {v1v2, v2v3, . . . , vk−1vk}. The length of a walk is its number of edges, in this case
k − 1. The two ends of the walk are v1 and vk (which may be the same vertex).

Let us now consider two specifications of the notion of walk.

Paths. A path P = (v1, v2, . . . , vk) is a walk in which all vertices are distinct. The
vertices v2, . . . , vk−1 are the internal vertices of P . We say that two paths are internally
disjoint if they have no internal vertex in common. We also call P a (v1, vk)-path. We
say that two vertices u, v are at distance k if the minimum length of a (u, v)-path is k.

A section Q = (vi, . . . , vj) of a path P = (v1, . . . , vk), for 1 ≤ i < j ≤ k, is a
subsequence of consecutive edges of P . For simplicity, we denote some paths by a sequence
of subpaths: if (Qi)i∈{1,...,k} is a family of edge-disjoint paths, we may write a path P =
(Q1, Q2, . . . , Qk); we may also denote it by an alternation of vertices and subpaths: P =
(v1, Q1, v2, . . . , vk−1, Qk, vk).

A path P = (v1, . . . , vk) of a graph G has a chord if there is an edge vivj ∈ E(G) such
that vi and vj belong to V (P ) but are not consecutive in P . We say that P is chordless
if it has no chord.
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Cycles. A cycle is a walk where the two ends are the same vertex, and all other vertices
are distinct from the ends and from one another. We denote a cycle C = (v1v2, . . . , vkv1)
by its sequence of vertices: C = (v1, v2, . . . , vk). This notation is not unique, as any vertex
from C could be considered the merged ends of the underlying walk.

The notion of length for paths and cycles is inherited from walks.

Hamiltonian path, cycle. A path (resp. a cycle) in a graph G is Hamiltonian if its
vertex set is V (G).

Girth. The girth g of a graph is the length of its shortest cycle (g ≥ 3).

Subdivisions. A graph is obtained from a subdivision of an edge uv, by replacing the
edge uv with a (u, v)-path of length 2, i.e. by adding an intermediate vertex of degree
2. A graph K is a subdivision of a graph H if K can be obtained from H by successive
subdivisions of edges.

Given a graph K, a K-subdivision in G is a subgraph of G that is a subdivision of K.
The roots of the K-subdivision are the images in G of the vertices of K, and the paths
of the K-subdivision are the images in G of the edges of K. Given a set U of vertices of
a graph G, we say that a K-subdivision of G is rooted on U if its roots are exactly the
vertices of U . We say that a K-subdivision is chordless if its paths are chordless.

K4-, C4+-subdivisions. The subdivisions we use in Chapter 4 are K4-subdivisions and
C4+-subdivisions (see Figure 1.1 below), where K4 is the complete graph on 4 vertices and
C4+ is the graph made up of a cycle on 4 vertices U = {x1, x2, x3, x4} and two additional
parallel edges x1x3, x2x4. We say that two subdivisions S, S ′ have the same type if S, S ′
are both K4-subdivisions or both C4+-subdivision. For ui, uj ∈ U , we denote ui ∼ uj the
(ui, uj)-path of a K4- or C4+-subdivision when there is no ambiguity.

u1 u2

u3

u4

S

S
S

S
S

S

(a) K4-subdivision

u1

u2

u3

u4

S

S

S

S

S S

(b) C4+-subdivision

Figure 1.1: The two subdivisions considered in Chapter 4
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1.3 Decompositions
The main result of this thesis deals with a decomposition problem. We present in Chap-
ter 2 several examples of such problems, divided into two main categories, vertex - and
edge-decompositions.

Decompositions. A vertex -decomposition (resp. edge-decomposition) is a partition of
the vertices (resp. edges) of a graph. Given a graph class G, a G-vertex-decomposition
of a graph G is a vertex-decomposition of G into subsets V1, . . . , Vk of vertices, such that
G[Vi] ∈ G for each i ∈ {1, . . . , k}. Similarly, a G-edge-decomposition of a graph G is
an edge-decomposition of G into subsets E1, . . . , Ek of edges, such that the subgraph of
G containing exactly the edges in Ei and their ends is a graph of G, for each i ∈ {1, . . . , k}.

The conjecture studied in this thesis deals with edge-decompositions into paths, which
we call path decompositions for conciseness. The framework we adopt to talk about such
decompositions represents paths as colors.

Coloring, path decompositions. We say that a (k-)path-coloring (or just coloring in
Chapters 3 and 4) of a graph G = (V,E) is a function c : E → J1, kK, with k ∈ N \ {0},
such that the edges with the same color form a path. We denote |c| = k the number of
colors used in the coloring. We say that a color x induces a path P if E(P ) = c−1({x}).
A good coloring of a connected graph G with n vertices is a

⌊
n
2

⌋
-path-coloring. A color x

ends on a vertex v if the path induced by the color x ends on v.

2-colorings ofK4-, C4+-subdivisions. To describe the 2-path-coloring of aK4-subdivision
or a C4+-subdivision S rooted on {u1, u2, u3, u4}, we use the notation {red = (ui1 →
ui2 → ui3 → ui4), blue = (uj1 → uj2 → uj3 → uj4)} for i1, i2, i3, i4 and j1, j2, j3, j4
two permutations of 1, 2, 3, 4. This notation means that we decompose S into two paths
Pred = (ui1 ∼ ui2 , ui2 ∼ ui3 , ui3 ∼ ui4) and Pblue = (uj1 ∼ uj2 , uj2 ∼ uj3 , uj3 ∼ uj4). The
decompositions of this kind that we consider throughout Chapter 4 feature each edge of
S exactly once. We sometimes insert non-special vertices in between the vertices from U
to describe the paths we take more precisely: the notation ( . . . → ui → v → uj → . . . )
means that the path ui ∼ uj considered is the (ui, uj)-path of the subdivision that contains
the vertex v.

1.4 Connectivity
Connected graphs. A graph is connected if there is a (u, v)-path in the graph between
any pair of vertices u, v. We say that the graph is disconnected otherwise. A disconnected
graph can be decomposed into connected components (or simply components), subsets of
vertices such that the vertices from each set form a connected graph.

Cuts. A k-cut of a connected graph G = (V,E) is a set X of k vertices of G, such that
G[V \X] is disconnected.

Connectivity. A graph is k-connected if it has more than k vertices and does not have
a (k − 1)-cut.
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Alternatively, Menger proved that a graph without a k-cut has k internally disjoint
(u, v)-paths between any pair (u, v) of vertices [61].

1.5 Definitions around planar graphs
We now define the graph class that is the object of the main theorem of this thesis. The
class of planar graphs has been well-studied over the years, as detailed in Chapter 2.

Planar graphs. A planar embedding of a graph in the plane is a placement of the
vertices and edges of the graph in the plane R2, assigning a position (x, y) ∈ R2 to each
vertex and a curve to each edge of the graph in such a way that the edges intersect only
at their endpoints. A graph is planar if it admits a planar embedding.

Faces. A planar embedding of a planar graph G partitions the plane R2 into regions.
The edges of G delimiting a region form a face. The degree of a face F is its number of
edges. Notably, the number of faces of a planar graph does not depend on the planar
embedding.

Outerplanar graphs. A graph is outerplanar if it is planar and has an embedding in
which all its vertices belong to the same face.

The following formula links the numbers of vertices, edges and faces of a planar graph.
Given a planar graph G = (V,E), with a set F of faces, we denote |V |, |E|, |F | the number
of vertices, edges and faces respectively.

Theorem (Euler’s formula). If G = (V,E) is a connected planar graph embedded in the
plane, with at least 1 vertex and a set F of faces, then |V | − |E|+ |F | = 2.

Note that despite the folklore attributing this formula to René Descartes in 1630, it
was indeed discovered by Euler [27] in 1752 and first proved by Adrien-Marie Legendre [57]
in 1794 [60].

Given a planar graph G = (V,E), with a set F of faces, we denote d(v), d(f) the degree
of a vertex v and a face f respectively. Observe that

∑
v∈V (d(v) − 6) = 2 · |E| − 6 · |V |

and
∑

f∈F (2 · d(f)− 6) = 4 · |E| − 6 · |F |. Then we can deduce from Euler’s formula that:∑
v∈V

(d(v)− 6) + 2 ·
∑
f∈F

(d(f)− 3) = −12

Kuratowski’s and Wagner’s theorems. Planar graph are usually characterized by
two results from the 1930s. The first one is Kuratowski’s theorem, from 1930, and it
defines planar graphs over forbidden subdivisions.

K5 is the complete graph on 5 vertices (see Figure 1.2a), while K3,3 is the complete
bipartite graph on two sets of 3 vertices (see Figure 1.2b), i.e. the graph with vertices
{a1, a2, a3, b1, b2, b3} and edges aibj, i, j ∈ {1, 2, 3}.

Theorem (Kuratowski, [56]). A graph is planar if and only if it does not contain a
K5-subdivision or a K3,3-subdivision.
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(a) K5 (b) K3,3

Figure 1.2: The forbidden subdivisions and minors of Kuratowski’s andWagner’s theorems

The second result is from 1937 and is the one we use in the proof of Chapter 4.

Theorem (Wagner, [78]). A graph is planar if and only if it does not contain a K5-minor
or a K3,3-minor.

1.6 Some graph classes
Let us now define some classical graph classes, mentioned in the proof and in the state of
the art of Chapter 2.

Trees. A graph is acyclic if it does not have a cycle as a subgraph. A tree is a connected
acyclic graph. A forest is a graph whose connected components are trees.

Bipartite graphs. A graph is bipartite if its vertex set V can be partitioned into two
independent sets. A complete bipartite graph Km,n is the graph on m+ n vertices, whose
vertex set can be partitioned into two independent sets Vm, Vn, such that there is an edge
between each vertex of Vm and each vertex of Vn.

Triangle-free graphs. We call triangle the complete graph K3 on 3 vertices. A graph
is triangle-free if it does not have a triangle as an induced subgraph.

Treewidth. A junction tree of a graph G = (V,E) is a tree T whose vertex set is made
up of n sets X1, . . . , Xn ⊆ V , such that the union of these sets cover V . For every edge
uv ∈ E, there is a set Xi that contains both u and v; and if Xi and Xj both contain a
vertex v, then v belongs to all the sets that form the unique (Xi, Xj)-path in T .

The treewidth of a graph G is the minimum size of the largest set Xi minus 1, among
all junction trees of G.

The pathwidth parameter has the same definition, as the minimum size of the largest
set Xi minus one, among all junction paths of G.

Series-parallel graphs. An (s, t)-series-parallel graph is a graph with two distinguished
vertices s, t, recursively defined as follows. An edge st is an (s, t)-series-parallel graph.
Given an (s, t1)- and an (s2, t)-series-parallel graphs, the series-composition of these two
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graphs obtained by identifying t1 and s2 is an (s, t)-series-parallel graph; and the parallel-
composition obtained by identifying the pair of vertices s, s2 and the pair t, t1 is an (s, t)-
series-parallel graph. A series-parallel graph is an (s, t)-series-parallel graph w.r.t. two of
its vertices s, t.

Planar 3-trees. A planar 3-tree is a planar graph that can be constructed from the
triangle K3 by a sequence of stacking operations, which consist in adding a vertex v to
the graph, and 3 edges vw1, vw2, vw3 to vertices w1, w2, w3 forming a (triangular) face.
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Chapter 2

History of Gallai’s conjecture

In this chapter, we first give an overview of some classical decomposition and coloring
problems in graph theory. We then present the different results of László Lovász’s paper
from 1968, On covering of graphs [58], including the titular conjecture by Tibor Gallai,
a similar conjecture posed by György Hajós, and a seminal theorem by Lovász, before
discussing its corollaries. We mention problems related to Gallai’s and Hajós’ conjectures,
and give a quick summary of the main results around Hajós’ conjecture. We then dive into
the literature and the many partial results around Gallai’s conjecture, and we conclude
the chapter by stating our contribution.

2.1 Decomposition problems
Many graph problems are studied under frameworks of graph coloring, as the use of
colors is a convenient way of reprensenting partitions of vertices, edges or faces in a
graph. Decomposition problems involving such partitions have been extensively studied
in the last century and form a major part of graph theory. The origin of such a framework
can be traced back to the mid-19th century. Francis Guthrie was trying to color the map
of counties of England in such a way that two counties sharing a border would receive
different colors, and noticed that he could do it with only four colors. The conjecture that
four colors suffice for any map was first mentioned in a letter of Augustus De Morgan
to William Rowan Hamilton on October 23, 1852, and became one of the most famous
problems in discrete mathematics in the century that followed, until it was finally proved
in 1977 by Kenneth Appel, Wolfgang Haken and John Koch [1, 2], and became the
Four-color theorem. The proof itself was revolutionary, as it had required 1200 hours of
computer time and was the first proof to necessitate extensive use of computers to solve
a large number of subcases. The final proof consists in getting the problem down to a set
of unavoidable configurations, then proving that each of these configurations is reducible
and can be solved individually; the same structure as in the main proof of the present
thesis, in Chapters 3 and 4.

The most well-studied graph coloring problem is the so-called vertex coloring prob-
lem [35]. It uses colors to translate an incompatibility between two actors: the vertices
each receive a color, and two vertices that are adjacent must receive different colors (see
Figure 2.1).
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Vertex coloring problem
• Instance: A graph G, an integer k
• Question: Can V (G) be colored with at most k colors in such a way that

adjacent vertices receive different colors?

Figure 2.1: The Petersen graph vertex-colored with 3 colors

Such a coloring is often called a proper coloring, and the smallest number k of colors
for which the graph G admits a proper coloring is called the chromatic number of G. The
vertex coloring problem is a well-known NP-complete problem, as proven by Richard Karp
in his seminal list of 21 NP-complete problems from 1972 [53], and as such is integral to
computational complexity theory and the P versus NP problem (for definitions around
complexity theory, see [39]). As a decomposition problem, the vertex coloring problem
consists in partitioning the vertices of a graph into independent sets.

One significant result related to vertex coloring is Brooks’ theorem, stated by R.
Leonard Brooks in 1941.

Theorem (Brooks [13], 1941). Let G be a connected graph with maximum degree ∆. Then
the chromatic number of G is at most ∆, unless G is a clique or an odd cycle, in which
case its chromatic number is ∆ + 1.

One major application of the vertex coloring problem is register allocation in compilers.
Introduced by Gregory J. Chaitlin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins and Peter W. Markstein [16] in 1981, the coloring approach to this
problem is still current [24].

Many variants of graph coloring problems have been studied, a famous one being the
edge coloring problem [35] (see Figure 2.2).

Edge coloring problem
• Instance: A graph G, an integer k
• Question: Can E(G) be colored with at most k colors in such a way that

incident edges receive different colors?

The minimum k for which G admits such a coloring is called the chromatic index of
G. The chromatic index is always at least the maximum degree ∆ of the graph. Similarly
to its vertex coloring counterpart, this problem can be seen as a decomposition problem
and consists in partitioning the edges of a graph into matchings.

A fundamental result for edge coloring is Vizing’s theorem, proved in 1964 by Vadim
G. Vizing. It is analogous to Brooks’ theorem mentioned above.

Theorem (Vizing [77], 1964). Let G be a connected graph with maximum degree ∆. Then
the chromatic index of G is at most ∆ + 1.
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Figure 2.2: The Petersen graph edge-colored with 4 colors

Other variants of graph coloring problems include total coloring [35], which combines
the constraints of vertex and edge coloring: can we color the vertices and edges of a graph
with at most k colors in such a way that no two adjacent vertices, no two incident edges,
and a vertex and an edge that are incident have the same color?

Finally, let us cite the variant of list coloring [35], which consists in coloring each
vertex v with a color taken from a list L(v) to obtain a proper coloring. A graph is
k-choosable if is has such a coloring for any assignment of lists L(v) of same capacity k
to the vertices.

Graph coloring is the subject of many open problems in graph theory, like the 1-2-3
conjecture, stated in 2004 by Michał Karoński, Tomasz Łuczak and Andrew Thoma-
son [52]. The edges of the graph are “colored” with weights 1, 2 or 3, and the weight of
a vertex is the sum of the weights of its incident edges. The conjecture states that any
connected graph on at least three vertices should have such a coloring in a way that the
weights of the vertices form a proper coloring. It is still open and an active research topic.

The four-color problem was graph theory’s earliest and most famous conjecture, and
its generalization, Hadwiger’s conjecture [45], is now considered one of the most important
problems in graph theory. It states that if a graph does not have the clique Kk as a minor,
its chromatic number is at most k − 1. Hadwiger proved the cases k ≤ 4 in 1943 [45],
and the four-color theorem of 1976 gives a solution for k = 5 (as shown by Wagner [79]
in 1937). Finally, Neil Robertson, Paul Seymour and Robin Thomas [71] proved the case
k = 6 in 1993, but the conjecture remains open for k > 6.

As mentioned above, graph coloring problems belong to a larger family of decompo-
sition problems. The vertex coloring problem asks to partition, or decompose, the graph
into independent sets, while the edge coloring problem partitions the edges into matchings,
and many other decompositions have been studied.

Some of these problems ask for a bipartition, or a partition into 2 sets. For instance, the
problems of maximum cut [44] and minimum cut [20] are examples of such decomposition
problems: they ask to split the vertex set of a graph into two disjoint subsets, such that
the edges between these sets respectively maximize and minimize some metric, like the
total weight for a weighted graph. A significant result about bipartitions that we can
mention was obtained by Daniel Gonçalves in 2005 [42], when he proved that the edges
of any planar graph can be partitioned into two outerplanar graphs.

The treewidth parameter can be seen as a covering problem, since it does not involve a
partition of the vertex set but rather a collection of non-disjoint sets that cover all vertices.
The same applies to some variants of treewidth, such as pathwidth (the definitions of these
two parameters are given in Chapter 1 on page 24). For these parameters, only the size
of the sets that cover all vertices is minimized (and not their number).
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Other types of decompositions, including the ones involved in the conjectures we
present in the next section, ask for a partition of the vertex or edge set into a minimum
number of particular subsets. For example, the arboricity of a graph is the minimum num-
ber of forests into which its edges can be partitioned. This parameter can be computed
in polynomial time [38]. This is not necessarily the case however for linear arboricity, the
minimum number of linear forests (forests made up of disjoint paths) into which the edges
may be partitioned. This problem is indeed NP-complete, since recognizing the graphs of
linear arboricity 2 is NP-complete as well [65].

The decomposition we study in this thesis is close to the definition of linear arboricity,
but involves edge-disjoint paths instead of linear forests. A path decomposition of a graph
is a partition of its edges into paths, and can be viewed as an edge coloring where each
color induces a path. This notion appears to have originated in the 1960s; it is mentioned
by Øystein Ore in 1962 [64] and Erdős in 1966 [58]. A similar variant we will mention is
the cycle decomposition, a partition of the edges of a graph into cycles.

The problem of finding the minimum number of paths in which a given graph can
be decomposed is NP-hard. Indeed, its decisional version, the problem consisting given
a graph G and an integer k of deciding whether the edges of G can be decomposed into
at most k of paths, was proven to be NP-complete by Péroche [66] in 1984. Péroche
actually showed that deciding whether a given graph can be decomposed into 2 paths is
NP-complete, even when the maximum degree of the graph is 4, with a reduction from
the problem of deciding whether the arcs of a given directed graph, with in-degree and
out-degree 2 for each vertex, can be partitioned into 2 Hamiltonian circuits, which he also
proved to be NP-complete.

We will see in the next section that path and cycle decompositions are closely linked,
by two similar conjectures that remain open as of today.
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2.2 Gallai’s conjecture

2.2.1 Origins of the conjecture

The story of the conjecture we are interested in starts in Hungary in the 1960s, with
a discussion between Paul Erdős (1913-1996) and Tibor Gallai (1912-1992). The two
childhood friends are well-known names in graph theory, and Erdős is often considered
one of the most prolific mathematicians of the 20th century.

According to László Lovász [58], at the time Ph.D. student of Gallai, the following
question can be attributed to Erdős: what is the minimum number of paths needed in
a path decomposition of any connected graph on n vertices? The bound of dn2e was
suggested by Gallai, and seems to have been first mentioned by Lovász in a colloquium
held in Tihany, Hungary in September 1966, before being published in 1968:

Conjecture 2.2.1 (Gallai [58], 1968). A connected graph with n vertices can be decom-
posed into at most dn2e paths.

This conjecture would go on to be known as Gallai’s path decomposition conjecture in
the literature, and is still open to this day. This is the problem we study in this thesis,
and the rest of this section is dedicated to laying out the many partial results established
over the past half-century.

We can first observe that connectivity is necessary for Gallai’s bound to hold. Indeed,
the disjoint union of k triangles has 3k vertices, and at least 2k paths are required in
any path decomposition of this graph, contradicting the bound of 3k

2 postulated by the
conjecture.

To prove that the conjecture’s bound of dn2e is tight, we consider the class of complete
graphs. In a graph with an odd number 2k + 1 of vertices, a single path covers at most
2k edges (if it is Hamiltonian), hence at least k + 1 paths are required to decompose the
(2k+ 1)k edges of the complete graph K2k+1 on 2k+ 1 vertices. This provides an infinite
family of graphs on which Gallai’s dn2e bound is tight. The graphs requiring at least dn2e
paths to be decomposed are discussed in Section 2.5.

(a) Even case K8 (b) Odd case K9

Figure 2.3: Walecki’s construction for an even and an odd complete graph

Let us take the opportunity to confirm Gallai’s conjecture on the class of complete
graphs, by using a construction attributed to Walecki by Édouard Lucas [59] in the
second volume of his Récréations mathématiques (1883). A complete graph K2p on an
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even number 2p of vertices {v0, . . . , v2p−1} can be decomposed into p paths defined as
Pk = (vk, vk+1, vk−1, vk+2, vk−2, vk+3, . . . , vk+p+1, vk+p), for k ∈ {0, . . . , p−1} and with each
index taken modulo 2p (see Figure 2.3a). A complete graph K2p+1 on an odd number
2p+1 of vertices {v0, . . . , v2p} can be decomposed in a similar way: we apply the previous
decomposition to a clique made up of the first 2p vertices {v0, . . . , v2p−1}, and turn each
path Pk into a cycle Ck by adding the edges vkv2p and vk+pv2p. Then we remove the edges
vkvk+1 for k ∈ {0, . . . , p− 1}, to turn the p cycles Ck into paths P ′k, and we add the path
Pp = (v0, v1, . . . , vp) to the decomposition. This defines a path decomposition of K2p+1

into p+ 1 paths (see Figure 2.3b).

2.2.2 Hajós’ conjecture

A similar conjecture was stated the same year by György Hajós (1912-1972), another
Hungarian mathematician, at the time professor at Eötvös Loránd University of Budapest,
at which Lovász was also studying. Hajós’ conjecture is analogous to Gallai’s and adapts
it to cycle decompositions (see Figure 2.4). An even (resp. odd) graph is a graph whose
vertices all have an even (resp. odd) degree.

Conjecture 2.2.2 (Hajós [58], 1968). An even graph with n vertices can be decomposed
into at most bn2c cycles.

Figure 2.4: An even graph decomposed into 3 cycles

The graphs in question are necessarily even in order to have a cycle decomposition,
and contrary to Gallai’s conjecture they do not need to be connected. This is due to the
arithmetical perks of using a floor function instead of a ceiling like in Gallai’s conjecture
(this point is detailed in Section 2.5).

Like Gallai’s conjecture, Hajós’ remains open as of today, and both were included in
John Adrian Bondy’s Beautiful conjectures in graph theory [7] in 2014. In 1986, Nathaniel
Dean observed that the conjecture’s bound could be easily strengthened.

Theorem (Dean [21], 1986). Hajós’ conjecture is equivalent to the statement: an even
graph with n vertices can be decomposed into bn−1

2 c cycles.
Hajós’ conjecture can be easily proven on complete graphs, with the construction

of Figure 2.3. It was then confirmed for graphs of maximum degree 4, independently
by Andrew Granville and Alexandros Moisiadis [43] in 1987 and by Odile Favaron and
Mekkia Kouider [33] in 1988. Favaron and Kouider’s result simultaneously proves Gallai’s
conjecture on the same class (see Section 2.4).
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Theorem (Granville, Moisiadis [43], 1987, Favaron, Kouider [33], 1988). Hajós’ conjec-
ture is true for graphs of maximum degree at most 4.

Our contribution to Gallai’s conjecture concerns planar graphs (see Section 2.6), and
follows a series of recent results on this class ([9, 40, 51, 55]). Hajós’ conjecture has
however been confirmed on planar graphs for decades, which is remarkable considering
the similarity of the two conjectures’ statements. Jiang Tao [75] claimed the result in
1984, but his proof was apparently incomplete. Karen Seyffarth [72] confirmed it in 1992,
with a proof based on Granville and Moisiadis’.

Theorem (Tao [75], 1984, Seyffarth [72], 1992). Hajós’ conjecture is true for planar
graphs.

Seyffarth’s strategy is somewhat similar to ours. It operates by contradiction, considers
a minimum counterexample to Hajós’ conjecture and uses it to show that it cannot contain
some simple structures (a 1-cut, two vertices of degree 2, some particular vertices of degree
4...). Finally, a technical lemma yields a contradiction and is proved by diving into an
intricate case analysis.

Other results on Hajós’ conjecture include the case of K−6 -minor-free graphs, by
Genghua Fan and Baogang Xu [31] in 2002 (K−6 is the complete graph on 6 vertices
minus one edge). The conjecture was confirmed for graphs of size up to 12 by Irene Hein-
rich, Marco V. Natale and Manuel Streicher [49] in 2017, and on graphs of pathwidth at
most 6 by Elke Fuchs, Laura Gellert and Irene Heinrich [37] in 2020.

The next subsection addresses conjectures and results that are related to Gallai’s
and Hajós’ conjectures. The sections that come after and the next chapters focus solely
on Gallai’s conjecture, which constitutes the most active research topic out of all the
conjectures presented in this chapter.

2.2.3 Related problems

We mention two problems related to Gallai’s and Hajós’ conjectures: one involves hybrid
decompositions into cycles and edges, the other deals with the covering variant of Gallai’s
conjecture.

Erdős-Gallai conjecture. Paul Erdős and Tibor Gallai conjectured [26] in 1966 that
the edges of a graph with n vertices could be covered with at most n−1 cycles and edges.
This conjecture was proved [68] in 1985 by another Hungarian mathematician, László
Pyber, at the time Ph.D. student of László Lovász and Gyula O. H. Katona.

The more general problem of decomposing an even graph into O(n) cycles is closely
related to Hajós’ conjecture and is also still open [34]. This problem is equivalent [34]
to a problem posed in 1966 by Paul Erdős and Tibor Gallai [26], which is known as the
Erdős-Gallai conjecture [25]:

Conjecture 2.2.3 (Erdős, Gallai [26], 1966). A graph with n vertices can be decomposed
into O(n) cycles and edges.

Girão, Granet, Kühn and Osthus [34] noted that Hajós’ conjecture would imply the
existence of a decomposition of any graph with n vertices into 3(n−1)

2 cycles and edges,
hence the Erdős-Gallai conjecture holds on all classes on which Hajós’ conjecture was
proved.
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Chung’s conjecture. Decomposition problems ask for a partition of the vertex or edge
set of some graph. The covering variant of these problems asks for a collection of subsets
of vertices or edges such that each vertex or edge is covered by at least one subset. The
covering variant of Gallai’s conjecture was stated in 1980 by Fan Chung, which was a
close friend and frequent collaborator of Paul Erdős.

Conjecture 2.2.4 (Chung [19], 1980). Any connected graph with n vertices can be covered
by dn2e paths.

Toward a proof of this conjecture, László Pyber proved [69] in 1996 the following
asymptotic result:

Theorem (Pyber [69], 1996). Any connected graph on n vertices can be covered by at
most dn2e + O(n3/4) paths.

Chung’s conjecture was then confirmed by Genghua Fan [30] in 1998.
Regarding the asymptotic version of Gallai’s conjecture, i.e. asking for a decomposition

of any graph with n vertices into n
2 +o(n) paths, Pyber observes in the same paper [69]

that it cannot be proved without proving the conjecture itself.
Recently, António Girão, Bertille Granet, Daniela Kühn and Deryk Osthus [34] also

studied Gallai’s, Hajós’ and Erdős-Gallai conjectures under an asymptotic framework, and
proved all three asymptotically for sufficiently large graphs with linear minimum degree.

Theorem (Girão, Granet, Kühn, Osthus [34], 2021). For any α, δ > 0, there exists n0

such that if G is a graph on n ≥ n0 vertices with minimum degree at least αn, then the
following hold.
• G can be decomposed into at most n

2 +δn paths;
• If G is even, then it can be decomposed into at most n

2 +δn cycles;
• G can be decomposed into at most 3n

2 +δn cycles and edges.

Apart from complete graphs (see Figure 2.3 above) and complete bipartite graphs
(discussed in Section 2.4 below), this is one of the only results dealing specifically with
dense graphs, i.e. graphs with a supralinear number of edges. Most other results in
Section 2.4 feature graph classes that are under some condition of small degree, large
girth or planarity. Density seems to be the most significant barrier to a complete proof
of one of the aforementioned conjectures.

Random graphs. A remarkable result from the last few years comes from Stefan Glock,
Daniela Kühn and Deryk Osthus, who proved [41] that Gallai’s conjecture holds for almost
all graphs, by studying it on random graphs. An Erdős-Rényi random graph Gn,p is a
graph on n vertices, such that each edge has the same probability p ∈ [0, 1] to be added
to the graph. We denote G ∼ Gn,p when a graph G is an Erdős-Rényi random graph. We
denote odd(G) the number of vertices of odd degree of G and ∆(G) the maximum degree
of G. The result is the following:

Theorem 2.2.5 (Glock, Kühn, Osthus [41], 2016). Let p ∈ ]0, 1[ be a constant and

G ∼ Gn,p. The probability that G can be decomposed into max

{
odd(G)

2 ,
⌈

∆(G)
2

⌉}
paths

converges to 1.

This implies that almost all graphs satisfy Gallai’s conjecture, with room to spare,
which makes us fairly optimistic about the chances of the conjecture being true.
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2.2.4 Lovász’s theorem

In 1968, in the same paper he introduced Gallai’s conjecture, László Lovász considered
hybrid decompositions allowing paths and cycles, and proved the following theorem:

Theorem 2.2.6 (Lovász [58], 1968). A graph with n vertices can be decomposed into at
most bn2c paths and cycles.

His proof only takes 2 pages and consists in a quite straightforward induction on
2|E|+ |V |, yet his result settles the same n

2 bound as in Gallai’s and Hajós’ conjectures.
It is interesting and rather counterintuitive that this bound was proved so early, and
arguably so easily, with a mix of paths and cycles allowed, while the same bound for
paths only or cycles only keeps resisting more than 50 years and many proof attempts
later.

This seminal paper was Lovász’s first at age 20, and marked the beginning of a success-
ful career, which culminated in 2021 when he was awarded the Abel Prize, often regarded
as the Nobel Prize of mathematics, jointly with Avi Wigderson.

2.3 A first approach: improving a general bound
A solution to Gallai’s conjecture is still to be found after half a century, but many partial
results have been obtained since then. Most of them may be split in two categories: those
that consider all connected graphs and prove a general bound on the number of paths
needed in a decomposition, and those that restrict the considered graphs to a certain
family, and settle the conjecture for this family. We present some results from the former
approach in this section, and from the latter in Section 2.4.

This section is thus dedicated to laying out general bounds in the minimum number
P(G) of paths needed to decompose any connected graph G. In the following theorems,
the graph G is not necessarily connected, and we denote odd(G) and even(G) the numbers
of vertices of odd and even non-zero degree in G respectively.

The first result of this kind comes once again from Lovász’s paper from 1968, and is a
consequence from his Theorem 2.2.6.

Theorem 2.3.1 (Lovász [58], 1968). If G is a graph such that even(G) ≥ 1, then

P(G) ≤ odd(G)

2
+ even(G)− 1

The proof of this theorem makes good use of the fundamental observation that in any
path decomposition, a vertex of odd degree is an end of a path from the decomposition.
Lovász first observes that if G has at most one vertex of even degree, the theorem yields
a path decomposition that satisfies Gallai’s conjecture. He then adds even(G) − 1 new
vertices to G and connects them one-to-one to the vertices of G of even degree: the graph
created has at most one vertex of even degree, and by applying Theorem 2.2.6, Lovász
obtains the above bound.

In 1980, Alan Donald notes an error in the proof of Theorem 2.2.6, corrects it and
substantially improves Lovász’s bound by refining his construction:

Theorem (Donald [23], 1980).

P(G) ≤ odd(G)

2
+

⌊
3 even(G)

4

⌋
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The general bound was improved twice, each time by further refining Lovász’s con-
struction. The bound was first brought down to 2

3
, independently in 1998 by Lirong

Yan [80] in his Ph.D. thesis and in 2000 by Nathaniel Dean and Mekkia Kouider [22]:

Theorem 2.3.2 (Yan [80], 1998, Dean, Kouider [22], 2000).

P(G) ≤ odd(G)

2
+

⌊
2 even(G)

3

⌋

This bound is the best possible for graphs that are not necessarily connected, as can
be seen by once again considering a disjoint union of triangles.

The bound was then somewhat lowered in 2013 by Peter Harding and Sean McGuin-
ness, with the additional requirement of having girth at least 4.

Theorem (Harding, McGuinness [48], 2013). If G is a graph with girth g ≥ 4, then

P(G) ≤ odd(G)

2
+

⌊
(g + 1) even(G)

2g

⌋
Note that for graphs with arbitrarily large girth, the bound g+1

2g gets arbitrarily close

to Gallai’s bound of 1
2 .

It does not seem that progress was made since 2000 on the general bound, which
incited us to favor a different approach: restricting the problem to some graph class and
proving that the conjecture holds on it. The next section lays out some of the results of
this branch, and Section 2.6 presents our contribution.

2.4 A second approach: partial resolution
When confronted to a statement difficult or impossible to prove in the general case, a
classical approach in graph theory is to restrict the set of considered graphs to some
specific class and prove that all its graphs satisfy the statement.

2.4.1 Example: the trees

We proved in Section 2.2.1 that the class of complete graphs satisfied Gallai’s conjecture.
As a second introductory example, we prove that the class of trees satisfies the conjecture
as well, by using a simplified verstion of the method we use to prove our main theorem.

This technique is widely used in the literature and in graph theory as a whole. We
operate by contradiction and assume that the result does not hold on trees. We can then
consider a counterexample to the conjecture on trees, i.e. a connected tree on n vertices
that cannot be decomposed into at most dn2e paths, and we take this graph minimal
w.r.t. its number of vertices n. We then prove that the existence of such a minimum
counterexample G yields a contradiction, by considering the two configurations depicted
on Figure 2.5:
• G contains two vertices u1, u2 of degree 1 with a common neighbor v. In this case, we

consider the reduced graph G′ obtained from G by removing u1 and u2. The graph G′
is a connected tree with less vertices than G, hence is not a counterexample, by the
minimality assumption on G. We consider a decomposition of G′ with dn−2

2 e =
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Figure 2.5: Reductions for trees

dn2e−1 paths. We keep this decomposition in G and complete it with the path
(u1, v, u2). We thus built a decomposition of G into dn2e paths, which contradicts
the nature of counterexample of G. Hence this configuration cannot appear in a
minimum counterexample.
• G contains a vertex u1 of degree 1 whose unique neighbor u2 has degree 2, having a

vertex v as a second neighbor. In this case as well, we consider the reduced graph
G′ obtained from G by removing u1 and u2. We consider a decomposition of G′ into
dn−2

2 e = dn2e−1 paths, and extend it with the path (u1, u2, v) in G. Once again,
we produced a decomposition of G that yields a contradiction.

Since these two configurations cover all cases, we deduce that no minimum counterex-
ample of the conjecture on trees can exist, hence the conjecture holds on trees.

In the main proof of this thesis, we proceed in the same way: we consider a mini-
mum counterexample of the conjecture on planar graphs, then consider similar reducible
configurations with 2 vertices to remove in Chapter 3, and more complex configurations
with 4 vertices to remove in Chapter 4. For each we provide a method to extend a good
decomposition of the reduced graph to a good decomposition of the whole graph. We
prove in Chapter 5 that a minimum counterexample without these configurations cannot
exist, which concludes the proof.

2.4.2 Initial results

American mathematician Frank Harary (1921-2005) is widely recognized as one of the
“fathers” of modern graph theory, and contributed to bring the usefulness of this field to
other scientific domains as diverse as physics, psychology, sociology or anthropology [73].

He took interest in the concept of path decompositions of directed and undirected
graphs (he coined the often-used term path number) when he met David Hsiao at the
FILE 68 conference, in Helsingør, Denmark, in November 1968. Their exchange led to
an application of these concepts, in the development of a formal system for information
retrieval from files [46] in 1970. In their formalism, the vertices of a directed graph
represent records in a file structure, and there is an arc from u to v whenever the record
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u points to the address of record v. The minimum number of record addresses needed to
trace through the entire file structure is therefore the minimum number of paths needed
to decompose the graph.

After Harary presented this work at the 1st Caribbean Combinatorial Conference in
Kingston, Jamaica, in 1970, Ralph G. Stanton teamed up with Donald D. Cowan and L.
O. James to start calculating the minimum number of paths to decompose some classical
graph classes [74]. His findings were summed up and simplified [47] by Frank Harary and
his Ph.D. student at the time, Allen J. Schwenk, in 1972.

Theorem (Stanton, Cowan, James [74], 1970, Harary, Schwenk [47], 1972).
Gallai’s conjecture holds on:
• trees;
• 3-regular (“cubic”) graphs;
• complete graphs;
• complete bipartite graphs.

2.4.3 Even degrees

Given the importance of the parity of the degrees for path decompositions, a lot of results
focus on classes defined by the degree of their vertices. The earliest class on which Gallai’s
conjecture was proved is the class of graphs with at most one vertex of even degree, as a
corollary to Lovász’s bound of Theorem 2.3.1.

Theorem 2.4.1 (Lovász [58], 1968). Gallai’s conjecture holds on graphs G with at most
one vertex of even degree.

This solves the case of odd graphs. Many results from the following decades concern
even graphs or the even subgraph Geven, the subgraph of a graph G induced by the vertices
of even degree of G.

Odile Favaron and Mekkia Kouider [33] confirmed both Gallai’s and Hajós’ conjectures
on even graphs of maximum degree 4 in 1988:

Theorem (Favaron, Kouider [33], 1988). Let G be a graph with n vertices, such that each
vertex has degree 2 or 4. Then G can be decomposed into at most dn2e paths or at most
bn−1

2 c cycles.
László Pyber proved that Gallai’s conjecture holds on graphs in which each cycle

contains a vertex of odd degree:

Theorem 2.4.2 (Pyber [69], 1996). Gallai’s conjecture holds on graphs G such that Geven

is a forest.

Pyber’s proof is based on Lovász’s method for Theorem 2.2.6 [58], just like Donald [23]
did in 1980 and himself [68] in 1985.

A block of a graph is a maximal 2-connected subgraph. A forest is a graph in which
each block is a single edge, thus each block of a forest has maximum degree at most 1. In
2005, Genghua Fan extended Pyber’s result with the following result:

Theorem 2.4.3 (Fan [29], 2005). Gallai’s conjecture holds on graphs G for which each
block of Geven is a triangle-free graph of maximum degree at most 3.
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The next result we present on even graphs was proved in 2017 by Fábio Botler and
Andrea Jiménez. A perfect matching of a graph G is a subset of disjoint edges of G, such
that each vertex is the end of an edge.

Theorem (Botler, Jiménez [8], 2017). Gallai’s conjecture holds on 2k-graphs (k ≥ 3) of
girth at least 2k − 2 and which admit a pair of disjoint perfect matchings.

To prove the theorem, Botler and Jiménez consider an intermediate decomposition
into paths and cycles. They then show how some pair of cycles from the decomposition
can be alternatively decomposed into two paths, and how some path and cycle from the
decomposition can be decomposed into two paths. They apply these operations succes-
sively to each cycle to obtain the desired decomposition of the graph into paths. This
idea was also used the same year by Fábio Botler, Maycon Sambinelli, Rafael S. Coelho
and Orlando Lee [12], and in 2020 by Yanan Chu, Genghua Fan and Qinghai Liu [18].
Parts of our proof are based on this method (Lemmas 3.2.2 and 4.4.1 in Chapters 3 and
4 use a lemma by Chu, Fan and Liu from [18]).

Finally and fairly recently, Fábio Botler and Maycon Sambinelli extended Fan’s result
of 2005, by allowing the even subgraph’s blocks to contain some triangles, as long as these
blocks are subgraphs of a specified family of graphs. They define the family G as the
family of graphs for which each block has maximum degree 3 and each component either
has maximum degree at most 3 or has at most one block that contains triangles.

Theorem (Botler, Sambinelli [10], 2021). Gallai’s conjecture holds on graphs G for which
Geven is a subgraph of a graph in G.

2.4.4 Maximum degree

In 2016, Marthe Bonamy and Thomas J. Perrett proved that the conjecture holds when
restricted to graphs of maximum degree at most 5 [6].

Theorem (Bonamy, Perrett [6], 2016). Gallai’s conjecture holds on graphs of maximum
degree at most 5.

A year later, I asked Marthe Bonamy to be a supervisor of my Master’s degree research
internship, and she introduced me to Gallai’s conjecture and offered me to work on some
planar classes. I then went on to dedicate the three years of my Ph.D. to prove the
conjecture on the class of planar graphs. The proof makes up the next three chapters
of this thesis, and uses the same techniques as Bonamy and Perrett’s proof. In [6],
they consider a minimum counterexample and prove that it cannot contain five specified
configurations. Then they show that the even subgraph of such a graph must be a forest
and conclude with Pyber’s Theorem 2.4.2.

In 2021, Yanan Chu, Genghua Fan and Qinghai Liu [18] extended this result by making
a first step toward graphs with maximum degree 6. The graphs K3, K5 and K−5 are
respectively the complete graphs on 3 and 5 vertices, and K5 minus one edge.

Theorem 2.4.4 (Chu, Fan, Liu [18], 2021). Gallai’s conjecture holds on graphs G of
maximum degree at most 6, such that the vertices of degree 6 of G induce an independent
set, and such that G is not K3, K5 or K−5 .

Their proof is more complex than Bonamy and Perrett’s, and involves successively
replacing some path and cycle with two paths, or two cycles with two paths, in a decom-
position, with the method discussed in the last subsection. Chu, Fan and Liu justify their
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condition of independence of the vertices of degree 6 by noting the existence of many
counterexamples to the general case, which substantially complexify the proof. These
counterexamples include graphs with 7 vertices and between 19 and 21 edges (i.e. the
complete graph K7 minus one or two edges), and are discussed in Section 2.5 below.

2.4.5 Planar graphs

Planar graphs are sparse, and make ideal candidates for case analyses. Many results are
centered on this class, including the main theorem of this thesis.

In 2015, Xianya Geng, Minglei Fang and Dequan Li [40] focused on the class of outer-
planar graphs, and confirmed the conjecture on its maximal and 2-connected elements. A
maximal outerplanar graphs is an outerplanar graph that loses this property if one edge
were to be added to it.

Theorem (Geng, Fang, Li [40], 2015). Gallai’s conjecture holds on maximal outerplanar
graphs and 2-connected outerplanar graphs.

Their proof is rather straightforward: they decompose a maximal outerplanar graph
G into a Hamiltonian path and paths of length 2 (shown in Figure 2.6), then adapt this
decomposition for any 2-connected subgraph of G.

Figure 2.6: A maximal outerplanar graph decomposed into a Hamiltonian path and paths
of length 2

Two years later, Philipp Kindermann, Lena Schlipf and André Schulz [55] took a look
at the class of series-parallel graphs, which is a subclass of planar graphs. They confirmed
Gallai’s conjecture on it with a proof that takes advantage of the inductive definition of
series-parallel graphs.

Theorem (Kindermann, Schlipf, Schulz [55], 2017). Gallai’s conjecture holds on series-
parallel graphs.

By combining their result and Dean and Kouider’s Theorem 2.3.2, they were able to
obtain a bound of b5n

8 c for planar 3-trees.
The same year, Fábio Botler, Maycon Sambinelli, Rafael S. Coelho and Orlando

Lee [11] generalized this result by confirming Gallai’s conjecture on the whole class of
graphs of treewidth at most 3. Their method allows them to solve Hajós’ conjecture on
this class as well [12].

Theorem 2.4.5 (Botler, Sambinelli, Coelho, Lee [11, 12], 2017). Gallai’s and Hajós’
conjectures hold on graphs of treewidth at most 3.
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They then used the methods developed for this proof to prove Gallai’s and Hajós’
conjectures on graphs of maximum degree 4 [12] (independently of Bonamy and Perrett’s
proof for degree 5) and Gallai’s conjecture on planar graphs of girth at least 6 [11].

In 2017, Andrea Jiménez and Yoshiko Wakabayashi [51] confirmed Gallai’s conjecture
on some family of triangle-free planar graphs. The odd distance of a graph G is the
minimum distance between any pair of vertices of G of odd degree.

Theorem (Jiménez, Wakabayashi [51], 2017). Gallai’s conjecture holds on triangle-free
planar graphs with odd distance at least 3.

Finally, Fábio Botler, Andrea Jiménez and Maycon Sambinelli [9] confirmed the con-
jecture on the whole class of triangle-free planar graphs in 2018.

Theorem 2.4.6 (Botler, Jiménez, Sambinelli [9], 2018). Gallai’s conjecture holds on
triangle-free planar graphs.

2.5 The strong conjecture
Some of the results presented in the previous section actually obtain a slightly stronger
bound than the one of dn2e required by Gallai’s conjecture, which we call the ceiling
bound. Theorems 2.4.1, 2.4.2, 2.4.3, 2.4.5 and 2.4.6 reach a bound of bn2c, which we
call the floor bound, that saves one path from the original bound when the number n of
vertices is odd.

Working with such a bound is useful, as underscored by the following observation.

Observation. Given k > 0 integers n1, . . . , nk,

k∑
i=1

⌊ni

2

⌋
≤

⌊∑k
i=1 ni

2

⌋
Let us consider a disconnected graph G with n vertices and k connected components

Gi, i ∈ {1, . . . , k}, such that each Gi has ni vertices. Let us assume that each compo-
nent Gi can be decomposed into bni

2 c paths. The observations tells us that G has a
decomposition into bn2c paths, which is not the case with the ceiling bound.

We call odd semi-clique a graph obtained from the complete graph K2k+1 on an odd
number 2k + 1 of vertices, for k ≥ 1, by removing at most k − 1 edges. These graphs
are exactly the graphs with n ≥ 1 vertices and at least bn2c(n − 1) + 1 edges. The next
observation states the impossibility of reaching the floor bound on odd semi-cliques.

Observation. Since bn2c paths can cover at most bn2c(n − 1) edges, odd semi-cliques
cannot be decomposed into bn2c paths.

The aforementioned exceptions of Theorem 2.4.4, K3, K5 and K−5 , as well as the
graphs obtained from K7 by removing at most 2 edges, are examples of odd semi-cliques.

In 2016, Marthe Bonamy and Thomas J. Perrett conjectured [6] that the odd semi-
cliques are the only exceptions to the floor bound on connected graphs. We call this
conjecture the strong Gallai’s conjecture, motivated by the obvious fact that it implies
the traditional conjecture.
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Conjecture 2.5.1 (Strong Gallai’s conjecture, Bonamy, Perrett [6], 2016).
Any connected graph with n vertices can be decomposed into bn2c paths or is an odd semi-
clique which can be decomposed into dn2e paths.

Odd semi-cliques correspond to the most dense graphs, and as noted above, seem to
be the ones on which Gallai’s conjecture is the hardest to prove.

2.6 Our contribution: planar graphs
We can now state the main result of this thesis, which concerns planar graphs. As
mentioned in the introduction and in Chapter 1, the class of planar graphs is a natural
one to consider, it has been studied ever since the 18th century [27, 57] and leads to
practical applications still in use [14, 32]. The following theorem is a joint work with
Marthe Bonamy and Nicolas Bonichon [5], and confirms the strong Gallai’s conjecture on
planar graphs.

Only two odd semi-cliques are planar: the triangle K3 and K5 minus one edge, which
we denote by K−5 (see Figure 2.7 below).

Figure 2.7: A 2-path decomposition of K3 (left) and a 3-path decomposition of K−5 (right)

Theorem 2.6.1 (Blanché, Bonamy, Bonichon [5], 2021+). Every connected planar graph
on n vertices, except K3 and K−5 , can be decomposed into bn2c paths.

To prove the result, we proceed with the approach formulated in Section 2.4, by con-
sidering a planar graph that is a counterexample to our theorem and is vertex-minimum
with respect to this property. We prove that such a minimum counterexample (MCE)
does not contain a certain set of configurations, by providing for each of these configu-
rations a reduction rule that takes advantage of the properties of the MCE and yields a
contradiction. This technique is widely used in the literature on graph coloring and on
Gallai’s conjecture ([6, 8, 9, 18]). More precisely, these reducible configurations deal with
vertices of small degree (at most 5), and after showing that our MCE cannot contain any
of these configurations (Lemma 2.6.2 below), we know that all of its vertices except four
have degree at least 6. We finally use Euler’s formula and structural arguments to prove
that there is no such graph (Lemma 5.0.1, p. 133, in Chapter 5).

2.6.1 Main lemma

We present in this subsection the main lemma, whose proof spans Chapters 3 and 4.

We call minimum counterexample (MCE) a planar graph that is distinct from K3 or
K−5 , that does not admit a good coloring (a path decomposition into bn2c paths in our
coloring framework) and is vertex minimum with respect to this property.
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Given a planar graph G, a 2-family is a set U of two vertices of G of degree at most 4.
A 4-family is a set of four 5-vertices. We say that a graph G with a 4-family U is almost
4-connected w.r.t. U if it does not contain a 3-cut A = {a1, a2, a3} ⊆ V (G) that separates
two vertices u, u′ ∈ U or two neighbors of some vertex u ∈ U ∩ A.

A configuration C is a property satisfied by a graph. The configurations we consider
are usually defined locally as specifications on the neighborhoods of some vertices in the
graph, and the possible presence (or absence) of some paths between them. By abuse of
language, we say that a graph G contains a configuration C when G satisfies the properties
of C.

The following lemma is the main result of this chapter and the next, and helps us
prove the main theorem in Chapter 5. We prove the first property as Lemma 3.1.1 (p. 45)
in Chapter 3 and the second property as Lemma 4.0.1 (p. 74) in Chapter 4.

Lemma 2.6.2. An MCE does not contain any of the following configurations:
• (CI): a 2-family;
• (CII): a 4-family with respect to which the MCE is almost 4-connected.
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Chapter 3

Elimination of vertices of degree at
most 4

In this chapter, we prove Lemma 3.1.1 (p. 45), which constitutes the first property of the
main lemma of our proof, Lemma 2.6.2 in the previous chapter.

To prove that an MCE G does not contain a configuration C, we proceed by contra-
diction: we assume that G does contain the configuration, then use its nature of MCE to
build a good coloring of G. The only configurations C we consider are specifications of
(CI) and (CII). To build a good coloring of G, we start by removing the two or four special
vertices forming the 2- or 4-family of C, along with their incident edges. Depending on
the case, we add or remove some edges from the obtained graph, and define the resulting
graph as the reduced graph G′. Ideally, this graph is connected and not aK3 orK−5 : in this
case, since it is smaller than the minimum counterexample G, it admits a good coloring,
that we call pre-coloring. We then adapt this pre-coloring to the original graph G, and
since G has two or four more vertices than G′, we may use 1 additional color (for (CI))
or 2 (for (CII)) to color G. The cases where G′ is disconnected are equally easy, unless
G′ has some K3 or K−5 connected components, in which case a complementary method is
used to combine a “bad” coloring of these components with the rest of the coloring.

In the present chapter, we split the configuration (CI) into simpler, specified cases,
and for each of them provide a reduction rule describing the adaptation of the pre-coloring
to a good coloring of G. The general method consists in fixing a shortest path P between
the two special vertices. The edges of P are removed alongside the special vertices and
possibly some additional edges, in order to obtain the reduced graph G′. In G, the edges
of P are then colored with the extra color. This has the advantage of having an end of
this extra color on each of the two special vertices, and the path induced by the extra
color can be conveniently extended to help cover all the edges of G that were missing in
G′.

This is the method used when the two special vertices are sufficiently distant from each
other, and in this case the adapting methods for each are independent and can be defined
separately. Figure 3.1 depicts a (CI) configuration where the two special vertices u1, u2
are at distance at least 3, and their neighborhoods are taken care of with two independent
elementary partial rules that when combined form a complete reduction rule. The extra
color induces the path P in red. These rules are defined in Section 3.1 on page 59.

When instead the special vertices are too close to each other and share some neighbors,
two elementary partial rules would interfere with each other and possibly create some
cycles in the decomposition. In these cases, we discard the shortest path and instead use
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Figure 3.1: A (CI) reduction rule made up of two elementary partial rules

a custom reduction rule to treat the neighborhoods of both special vertices at once. These
rules correspond to rules (a), (b), . . . , (u) in Section 3.1 on page 47. Figure 3.2 features
an example of such a rule, and the extra color is again represented in red as the path P .
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P

P P

P
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Figure 3.2: A (CI) reduction rule treating close special vertices

The next section introduces the reduction rules we need to treat the (CI) configu-
rations. The generalization to this method for (CII) configurations is presented at the
beginning of Chapter 4, on page 74.

3.1 Reduction rules for (CI) configurations
This notion of reducible subgraph has been used in previous works [6, 8, 9, 10, 11]. We
present here a formalism appropriate for our subgraphs.

A reduction rule R = (C, f r, f c) is composed of a configuration C, a reduction function
f r and a recoloring function f c. The configuration distinguishes a 2-family or 4-family U ,
that we call special vertices. Given a planar graph G that contains the configuration
C, we call f r(G) the reduced graph G′, whose vertex set is V (G′) = V (G) \U and some of
its edges were added or removed from G.

Given G and a coloring pc (called pre-coloring) of the reduced graph G′ = f r(G), the
recoloring function f c(G, pc) gives a coloring of G.

For instance, let us consider the rule shown in Figure 3.3, whose formalism will be
fully described in the next section. The configuration of the rule is the following: the
graph contains at least 5 vertices u1, u2, v, v1, v2 and potentially a vertex v3 such that u1
is a 3-vertex adjacent to v1, v and u2; the vertex u2 is adjacent to u1, v, v2 and potentially
v3, but not to other vertices; and v2 is a vertex of even degree. The reduction function
consists in removing every edge incident to u1 and u2. As v2 has an even degree in G,
it has an odd degree in the reduced graph G′. Hence it is the end of a path Q. The
recoloring function is the following: color the edges (v2, u2) and (u2, u1) with the color of
Q, use a new color to color the edges (v1, u1), (u1, v), (v, u2) and (u2, v3) if u2 is a 4-vertex,
to form a new path P . For all other edges, use colors of pc.

A reduction rule R = (C, f r, f c) is valid if for any planar graph G that contains the
configuration C, then the reduced graph G′ = f r(G) is planar; for any path coloring pc
of G′, f c(G, pc) is a path coloring; and for any coloring pc of G′, |f c(G, pc)| − |pc| ≤
b |V (G)|−|V (G′)|

2
c. One can easily check that the rule of Figure 3.3 is valid.
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Figure 3.3: Example of a reduction rule. The formalism used to describe reduction rules
is given in Section 3.1.

The rest of this chapter and the entirety of Chapter 4 are dedicated to describing a set
of configurations that cover all the cases of Lemma 2.6.2, and providing a resolution rule
for each of these configurations. For each rule we provide, we justify that it is valid. The
existence of a valid rule R = (C, f r, f c) is in itself not enough to guarantee that an MCE
cannot contain the configuration C. Indeed, the reduced graph could contain a K3 or K−5
connected component, and therefore not admit a good coloring. However, we argue in
Lemma 3.2.2 (on page 64, for rules associated with (CI) configurations) and Lemma 4.4.1
(on page 99, for rules associated with (CII) configurations) that our rules are sufficient to
build a good coloring of the MCE regardless of the presence of K3 or K−5 components in
the reduced graph.

The rest of this chapter is dedicated to proving the first part of Lemma 2.6.2 (p. 42),
which we reformulate as the following lemma.

Lemma 3.1.1. An MCE does not contain a configuration (CI).

To prove this result let us introduce a first set of reduction rules, defined over local
conditions. We show that each reduction rule is valid in Lemmas 3.1.2, p. 57, and 3.1.3,
p. 62. We then prove that the application of each of these rules on an MCEG is sufficient to
provide a good coloring of G (Lemma 3.2.2, p. 64). Finally, we show (Lemma 3.3.1, p. 65)
that the configuration (CI) is of the form of at least one of the reducible configurations
that we list below.

We define the rules with both a graphical and a textual formalism, each of them being
self-sufficient.

Graphical formalism Each rule (C, f r, f c) is formally defined by a triplet of drawings
(see for instance Figure 3.3). The first drawing defines the configuration C of the rule,
the reduction function f r of defined by the difference between the first two drawings,
and finally the third drawing defines the recoloring function f c. Let us first describe the
graphical formalism used to define the configuration of a rule.

The vertices involved in a configuration are represented by circles ( or ), diamonds
( ) or squares ( ). The existence of an edge is materialized by a solid line ( ) between
the vertices. The absence of an edge is materialized by a dashed line ( ). A waved
line ( ) represents a path between two vertices that avoids other represented vertices
(unless specified). When an edge is represented by a dash-dotted edge ( ), this means
that we consider the cases when this edge is present and when it is absent. A solid line
with a gray vertex in the middle ( ) represents a path of length 1 or 2. If it is of
length 2, the middle vertex is distinct from the other vertices on the figure.
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When all the incident edges of a vertex are explicitly drawn (with solid or dash-dotted
edges), the vertex is represented by a black circle ( ). Vertices of odd (resp. even) degree
are represented by diamonds ( ) (resp. squares ( )). A dashed waved line ( ) means
that the graph does not contain a path between its endpoints that avoids every vertex
represented.

For the second drawing of the triplet, we need a few other conventions, because it also
encodes information on the pre-coloring. Letters Q,R denote paths from the pre-coloring,
and the two letters may represent the same path. If an edge is colored Q and another is
colored Q, this means that they have different colors. If an edge stays black in the second
drawing, it means that the edge keeps its color in the recoloring of G. An incoming arrow
colored Q at a vertex means that this vertex is the end of a path colored Q. If this arrow
is on a half-edge, this means that the last edge of the path is not determined by the figure,
and one of the drawn vertices could be the other end of the edge.

A black solid (resp. dashed) arrow between a vertex and a path means that the vertex
is (resp. is not) on the path (see for example the cases (h5) and (h6) of rule (h)).

The definition of the reduction function is quite straightforward. Every edge that is
in the first (resp. second) drawing but not in the second (resp. first) is deleted (resp.
added) by the reduction function and both vertices u1, u2 are deleted (together with their
incident edges).

For rules (h) and (r), a case analysis is needed to define the recoloring function:
the second drawing is split into several copies of the same graph, depicting the different
possible properties of the pre-coloring of the reduced graph.

The third graph encodes directly the recoloring function by giving colors explicitly to
the edges of G \G′ from the pre-coloring of the reduced graph G′.

Textual formalism For each rule (C, f r, f c), we first define textually the configuration
C, over local conditions around the special vertices. We then define the reduction function
f r by specifying the edges that are added or removed to form the reduced graph G′. The
special vertices u1, u2 and their incident edges are removed in each rule and omitted in the
descriptions. Finally, we define the recoloring function f c by describing the operations
applied to a coloring of G′ to color all the edges of G.

We call deviation the recoloring operation that consists in replacing a color inducing
a path P ′ in G′ by a color inducing a path P in G, such that P is obtained from P ′ by
replacing an edge vv′ with a section (v, u, v′) of length 2 or (v, u, u′, v′) of length 3, using
only special vertices u, u′ as internal vertices. An example of deviation is the path Q in
rule (a).

We call extension the recoloring operation that extends a path Q induced by a color of
G′ on several additional edges in the coloring of G, those edges having only the endpoints
of Q and special vertices as ends. In particular, when a non-special vertex has an odd
degree in G′, a color must end on it and we may extend this color in G. The rules are
frequently defined so as to “force” some vertices to have an odd degree in the reduced
graph.

When the rule involves 2 special vertices (which is the case for all of them except (a)),
we may use an extra color (inducing the red path P on the drawings) to color the graph
G, as by definition of valid rule, one (

⌊
|V (G)|−|V (G′)|

2

⌋
) additional color is allowed when

adapting the pre-coloring of G′ to a coloring of G.
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With all this formalism in mind, we can introduce our first set of rules: (a), (b), . . . ,
(u). Note that we justify the planarity of the reduced graph and the validity of all the
rules in Lemma 3.1.2 after the definitions.

List of the rules (a), (b), . . . , (u):

v1 v2

u1(a)

 
v1 v2

Q  

u1

v1 v2Q Q

• (a): The special vertex u1 has degree 2: it has two non-adjacent neighbors v1, v2.
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1.

v1

v

v2

v3
u1

u2

(b)

 

v1

v

v2

v3
Q

 u1
u2

v1

v

v2

v3P

P P

PQ

Q

Q

• (b): The two special vertices u1, u2 are adjacent and they have precisely one common
neighbor v. The special vertex u1 has degree 3: it has another neighbor v1, and u2
has degree 3 or 4, with a neighbor v2 and maybe another v3. The vertex v2 has an
even degree in G.
Reduction: In the reduced graph, v2 has an odd degree: let Q be a path of the
coloring of G′ that ends on v2.
Recoloring: In G, we extend Q to the edges v2u2, u2u1. We use the extra color on
the path P = (v1, u1, v, u2) and maybe the edge u2v3 if it is in G.

v1 v2

v3 v4

v

u1 u2

(c)

 

v1 v2

v3 v4

v

Q

 u1 u2

v1 v2

v3 v4

v

P

P P

P

Q

Q

Q

• (c): Each of the two special vertices u1, u2 has degree 3 or 4. They are adjacent,
they have precisely one common neighbor v and each of u1, u2 has another neighbor,
v1, v2 respectively. Each of u1, u2 may have a third neighbor v3, v4 respectively. The
vertices v1, v2 are non-adjacent.
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1, u2. We use the extra color
on the path P = (u1, v, u2), and maybe on the edges v3u1 and u2v4 if they belong
to G.
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v1 v2
v

u1 u2

(d)

 v1 v2
v

Q

 
u1 u2

v1 v2
v

Q

Q P

QP P

P

• (d): The two special vertices u1, u2 have degree 3. They are adjacent, they have
precisely one common neighbor v and each of u1, u2 has another neighbor, v1, v2
respectively, which is adjacent to v. The vertices v1, v2 are adjacent, and v has an
odd degree in G.
Reduction: In the reduced graph, we remove the edge v1v2. The vertex v keeps an
odd degree: let Q be a path of the coloring of G′ that ends on it.
Recoloring: In G, we extend Q on the edges vu1 and u1u2. We use the extra color
on the path (v, u2, v2, v1, u1).

v1 v2
v

u1 u2

(e)

 v1 v2
v

Q

 

u1 u2

v1 v2
v

Q P

PP

P

Q

Q

• (e): The two special vertices u1, u2 have degree 3. They are adjacent, they have
precisely one common neighbor v and each of u1, u2 has another neighbor, v1, v2
respectively. The vertex v1 is adjacent to v. The vertex v has an even degree in G.
Reduction: In the reduced graph, we remove the edge vv1. The vertex v has an
odd degree in G′, so let Q be a path of the coloring of G′ that ends on v.
Recoloring: In G, we extend Q on the edges vu1 and u1u2. We use the extra color
on the path P = (u1, v1, v, u2, v2).

v1

v2

v5 v6

v3 v4u1 u2

(f)

 

v1

v2

v5 v6

v3 v4
Q

R

 

u1 u2

v1

v2

v5 v6

v3 v4

P

PP

P P

PP

Q

Q

PP

R

R

• (f): Each of the two special vertices u1, u2 has degree 3 or 4. They are non-
adjacent, they have precisely two common neighbors v1, v2 and each of u1, u2 has
another neighbor v3, v4 respectively. Both v3, v4 are adjacent to both v1, v2. The
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vertices v1, v2 are non-adjacent. Each of u1, u2 may have another neighbor, v5, v6
respectively.
Reduction: In the reduced graph, we add the edge v1v2 and remove the edges v1v3
and v2v4.
Recoloring: In G, we deviate the color of v1v2 on u1, and the color of v1v4 on u2.
We use the extra color on the path P = (u1, v3, v1, v4, v2, u2), and maybe on the
edges v5u1 and u2v6 if they belong to G.

v1

v2

v5 v6

v3 v4u1 u2

(g)

 

v1

v2

v5 v6

v3 v4
Q

R

 

u1 u2

v1

v2

v5 v6

v3 v4
P

P

P

P PQ

Q

PP

R

R

• (g): Each of the two special vertices u1, u2 has degree 3 or 4. They are non-adjacent,
they have precisely two common neighbors v1, v2 and each of u1, u2 has another
neighbor v3, v4 respectively. Both v3, v4 are adjacent to both v1, v2. The vertices
v1, v2 are adjacent. Each of u1, u2 may have another neighbor, v5, v6 respectively.
There is a path P34 between v3 and v4 in G that is vertex-disjoint from the other 6
vertices.
Reduction: In the reduced graph, we remove the edges of the path P34.
Recoloring: In G, we deviate the color of v1v2 on u1, and the color of v1v4 on u2.
We use the extra color on the path P = (u1, v3, P34, v4, v1, v2, u2), and maybe on the
edges v5u1 and u2v6 if they belong to G.
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v1

v2

v5 v6
v3 v4u1 u2

(h)

• (h): Each of the two special vertices u1, u2 has degree 3 or 4. They are non-adjacent
and have precisely two common neighbors v1, v2. Each of u1, u2 has another neighbor
v3, v4 respectively, both adjacent to both v1, v2. The set {v1, v2} is a 2-cut that
separates u1, u2. Each of u1, u2 may have another neighbor v5, v6 respectively.
Reduction: In the reduced graph, we add the edge v3v4. Let Q be the path of the
coloring of G′ induced by the color of v3v4. We denote it Q = (Q1, v3, v4, Q2).
Recoloring: We distinguish between six cases, depending on the properties of the
path Q. Rule (h1) covers the case where the path Q avoids the vertex v2. In rules
(h2) and (h3), the vertices v2, v3, v4 and v1 appear in that order on the path Q. Rule
(h2) covers the case where v5 is on the subpath between v2 and v3, and v6 is on the
subpath between v4 and v1 (the rules are a bit more general and only require v5 and
v6 to avoid some subpaths of Q). Rule (h3) covers the case where the vertex v5 (if
it exists) avoids the subpath of Q between v2 and v3. By symmetry, this also covers
the case where v6 (if it exists) avoids the subpath of Q between v4 and v1. In rules
(h4), (h5) and (h6), the vertices v1, v2, v3 and v4 appear in this order on the path Q.
Rule (h4) covers the case where the vertex v5 avoids the subpath of Q between v2
and v3, while in rules (h5) and (h6) the vertex v5 avoids the subpath of Q between
v1 and v2. In rule (h5), the vertex v6 avoids the subpath of Q after v1, and in rule
(h6) it avoids the subpath between v1 and v2. Since each of v5, v6 avoids at least
one subpath of Q, this covers all possible cases.

(h1)

 

v1

v2

v5 v6
v3 v4

Q

Q1 Q2

 
u1 u2

v1

v2

v5 v6
v3 v4

Q1 Q2

Q′

Q′ Q′

Q′

P P

P
P

1. Q does not touch v2 in G′.
In G, we replace the path Q with the path Q′ = (Q1, v3, u1, v2, u2, v4, Q2). We
use the extra color on the path P = (u1, v1, u2) and maybe on the edges v5u1
and u2v6 if they belong to G.
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(h2)

 

v1

v2

v5 v6
v3 v4

Q

Q1

Q2

Q1

Q2

 
u1 u2

v1

v2

v5 v6
v3 v4

P

PP

PQ′

Q′

Q′

Q′

Q′

P

Q′

P

2. Q1 touches v2 and Q2 touches v1. The vertex v5 does not touch Q2, and v6
does not touch Q1.
In G, we replace Q with a path Q′ = (Q1, v3, u1, v1, u2) and maybe extend Q′
on u2v6. We use the extra color on the path P = (Q2, v4, u2, v2, u1) and maybe
on the edge u1v5.

(h3)

 

v1

v2

v5 v6
v3 v4

Q

Q

R1

Q2

R′
1

Q2

 
u1 u2

v1

v2

v5 v6
v3 v4

P

Q

P Q′

Q′

Q P

P
P

P

Q′

Q′

Q′

3. Q1 touches v2 and Q2 touches v1. We denote Q1 = (v3, R1, v2, R
′
1). The vertex

v5 does not touch R1. Note that by planarity, v6 cannot touch R1.
In G, we replace Q with a path Q′ = (R′1, v2, u2, v4, Q2) and we deviate
the color of v3v1 in G′ on u1. We use the extra color on the path P =
(v5, u1, v2, R1, v3, v1, u2) and maybe on the edge u2v6.

(h4)

 

v1

v2

v5 v6
v3 v4

Q

R′′
1

Q2

R′
1

R1

 
u1 u2

v1

v2

v5 v6
v3 v4

Q

Q

Q′

P

P

Q′

Q′

Q′

Q′
Q′Q′ P

P

P

4. Q1 touches both v1, v2: we denote it Q1 = (R1, v1, R
′
1, v2, R

′′
1, v3). The vertex

v5 does not touch R′′1. Again by planarity, v6 cannot touch R′′1.
In G, we replace Q with a path Q′ = (u1, v2, R

′′
1, v3, v1, u2) and maybe extend

Q′ on the edges v5u1 and u2v6. We deviate the color of v3v1 on u1 and we use
the extra color on the path P = (Q2, v4, u2, v2, R

′
1, v1, R1).
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(h5)

 

v1

v2

v5 v6
v3 v4

Q

R′′
1

Q2

R′
1

R1

 
u1 u2

v1

v2

v5 v6
v3 v4

Q

Q

P

Q′

P Q′

P

Q′
Q′P

Q′

Q′

P

5. Q1 touches both v1, v2: we denote it Q1 = (R1, v1, R
′
1, v2, R

′′
1, v3). The vertex

v5 does not touch R′1, and v6 does not touch R1. Again, note that by planarity
v5 cannot touch Q2 and v6 cannot touch R′′1.
In G, we replace Q with a path Q′ = (u1, v2, R

′
1, v1, u2, v4, Q2) and maybe

extend Q′ on the edge v5u1. We deviate the color of v3v1 on u1 and we use the
extra color on the path P = (R1, v1, v3, R

′′
1, v2, u2) and maybe on the edge u2v6.

(h6)

 

v1

v2

v5 v6
v3 v4

R′′
1

Q2

R′
1

R1

 
u1 u2

v1

v2

v5 v6
v3 v4

Q′

Q′

Q′

Q′

P

P

P
P

Q′ Q′

P

Q′

6. Q1 touches both v1, v2: we denote it Q1 = (R1, v1, R
′
1, v2, R

′′
1, v3). None of v5, v6

touch R′1.
In G, we replace Q with a path Q′ = (R1, v1, u1, v3, R

′′
1, v2, u2, v4, Q2). We use

the extra color on the path P = (u1, v2, R
′
1, v1, u2) and maybe on the edges

v5u1 and u2v6.

v1
v2v

v′

u1 u2
(i)

 
v1

v2v

v′

Q
R

 

u1 u2

v1
v2v

v′

P P P
PQ

Q R

R

• (i): The special vertex u1 has degree 3 or 4, and u2 has degree 4. The special
vertices u1, u2 have (at least) two common neighbors v, v′ that are non-adjacent.
The special vertex u2 has another neighbor v2, non-adjacent to v′ nor u1, and u1
may have another neighbor v1, non-adjacent to u2. If u1, u2 are non-adjacent, they
have another common neighbor w; let us denote P12 the path (u1, u2) if u1, u2 are
adjacent, and (u1, w, u2) otherwise.
Reduction: In the reduced graph, we add the edges vv′ and v2v′.
Recoloring: In G, we deviate the color of vv′ on u1 and the color of v2v′ on u2. We
use the extra color on the path P = (v, u2, P12, u1) and maybe on the edge u1v1 if
it belongs to G.
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v1
v2v

v′

u1 u2
(j)

 
v1

v2v

v′

Q
R

 

u1 u2

v1
v2v

v′

P P P
P

P

P

Q

Q R

R

• (j): The special vertex u1 has degree 3 or 4, and u2 has degree 4. The special
vertices u1, u2 have (at least) two common neighbors v, v′ that are non-adjacent.
The special vertex u2 has another neighbor v2, adjacent to v, v′ but not u1, and u1
may have another neighbor v1, non-adjacent to u2. If u1, u2 are non-adjacent, they
have another common neighbor w; let us denote P12 the path (u1, u2) if u1, u2 are
adjacent, and (u1, w, u2) otherwise.
Reduction: In the reduced graph, we add the edge vv′ and remove the edge vv2.
Recoloring: In G, we deviate the color of vv′ on u1 and the color of v2v′ on u2. We
use the extra color on the path P = (v′, v2, v, u2, P12, u1) and maybe on the edge
u1v1.

v

v′

u1 u2
(k)

 
v

v′

Q

R

 

u1 u2

v

v′

P P

PQ

Q

R

R

• (k): The special vertices u1, u2 have degree 3, with at least two common neighbors
v, v′ that are non-adjacent. If u1, u2 are non-adjacent, they have another common
neighbor w; let us denote P12 the path (u1, u2) if u1, u2 are adjacent, and (u1, w, u2)
otherwise. The vertex v′ has an even degree in G.
Reduction: In the reduced graph, we add the edge vv′. The vertex v′ now has an
odd degree, so let R be a path of the coloring of G′ that ends on v′.
Recoloring: In G, we deviate the color of vv′ on u1, and extend R on the edge v′u2.
We use the extra color on the path P = (u1, P12, u2, v).

v

v′

u1 u2
(l)

 v

v′

Q

R

 

u1 u2

v

v′

P

P P

P
Q

Q

R

R

• (l): The special vertices u1, u2 have degree 3, with at least two common neighbors
v, v′ that are non-adjacent and both have an odd degree in G. If u1, u2 are non-
adjacent, they have another common neighbor w; let us denote P12 the path (u1, u2)
if u1, u2 are adjacent, and (u1, w, u2) otherwise.
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Reduction: In the reduced graph, v, v′ now have an odd degree, so let Q,R be
paths of the coloring of G′ that end on v, v′ respectively.
Recoloring: In G, we extend Q on the edge vu1 and R on v′u2. We use the extra
color on the path P = (v′, u1, P12, u2, v).

v′

v

v′′u1 u2
(m1)

 v′

v

v′′

Q

R

 

u1 u2

v′

v

v′′

P

P

P

R

R

Q

Q

• (m1): The two special vertices u1, u2 have degree 3, they are non-adjacent and have
three common neighbors v, v′, v′′, such that v′ is adjacent to v and v′′.
Recoloring: In G, we deviate the color of vv′ in G′ on u2 and the color of v′v′′ on
u1. We use the extra color on the path P = (u1, v, v

′, v′′, u2).

v

v′

v1 v2v′′u1 u2
(m2)

 

v

v′

v1 v2v′′

Q

R

 

u1 u2

v

v′

v1 v2v′′

P

Q PP

R

R

• (m2): The special vertex u1 has degree 4, and u2 has degree 3 or 4: they are
non-adjacent and have precisely three common neighbors v, v′, v′′, such that v′ is
adjacent to v and v′′. The special vertex u1 has another neighbor v1, and u2 may
have another neighbor v2, such that v1 6= v2.
Reduction: In the reduced graph, we add the edge vv1 if it does not already belong
to G.
Recoloring: In G, we deviate the color of vv1 in G′ on u1, and the color of vv′
on u2. We use the extra color on the path P = (v, v′, u1, v

′′, u2) and maybe on the
edges vv1 and u2v2 if they belong to G.

v

v′

v1 v2u1 u2
(n)

 v

v′

v1 v2

Q

 

u1 u2

v

v′

v1 v2
P

P

P

P

P

Q

Q

Q

• (n): Each of the two special vertices u1, u2 has degree 3 or 4. They are adjacent and
have precisely two common neighbors v, v′ that are adjacent. Each of u1, u2 may
have another neighbor, v1, v2 respectively.
Recoloring: In G, we deviate the color of vv′ in G′ on u1, u2. We use the extra
color on the path P = (u1, v

′, v, u2) and maybe on the edges v1u1 and u2v2 if they
belong to G.
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v

v′

v′′

u1 u2

(o)

 
v

v′

v′′

Q

R

 

u1 u2

v

v′

v′′

P

P P

PQ

Q R

R

• (o): The special vertices u1, u2 have degree 4, with at least three common neighbors
v, v′, v′′ such that v′ is non-adjacent to v and v′′. If u1, u2 are non-adjacent, they
have another common neighbor w; let us denote P12 the path (u1, u2) if u1, u2 are
adjacent, and (u1, w, u2) otherwise.
Reduction: In the reduced graph, we add the edges vv′ and v′v′′.
Recoloring: In G, we deviate the color of vv′ on u1 and the color of v′v′′ on u2.
We use the extra color on the path P = (v′′, u1, P12, u2, v).

v

v′

v′′

u1 u2

(p)

 
v

v′

v′′

Q

R

 

u1 u2

v

v′

v′′

P

P P

P

P

Q

PP

Q R

R

• (p): The special vertices u1, u2 have degree 4, with at least three common neighbors
v, v′, v′′ such that v′ is adjacent to v and non-adjacent to v′′. If u1, u2 are non-
adjacent, they have another common neighbor w; let us denote P12 the path (u1, u2)
if u1, u2 are adjacent, and (u1, w, u2) otherwise.
Reduction: In the reduced graph, we add the edge v′v′′.
Recoloring: In G, we deviate the color of vv′ on u1 and the color of v′v′′ on u2.
We use the extra color on the path P = (v′′, u1, P12, u2, v, v

′).

v1

v2

v

u1 u2

(q)

 v1

v2

v

Q

 
u1 u2

v1

v2

v

Q

Q Q

PP

P

• (q): The special vertex u1 has degree 2, and u2 has degree 3 or 4. The special
vertices u1, u2 are adjacent and have precisely one common neighbor v. The special
vertex u2 has another neighbor v1 adjacent to v, and maybe another neighbor v2.
Recoloring: In G, we deviate the color of the edge vv1 in G′ on u1, u2. We use the
extra color on the path P = (u2, v, v1), and maybe on the edge v2u2 if it belongs to
G.
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vv1 v2

u1 u2

(r)

 

vv1 v2
Q  

u1 u2

vv1 v2
Q

Q

P

P

 vv1 v2
Q Q  

u1 u2

vv1 v2
Q′

Q′

P

P

P

• (r): The two special vertices u1, u2 have degree 2: they are adjacent and have one
common neighbor v. The vertex v has at least one other neighbor v1.
In the reduced graph, we examine two cases.
– In the first case, a path Q of the coloring of G′ ends on v (through the edge
v1v).
Recoloring: In G, we extend Q on the edge vu1. We use the extra color on
the path P = (u1, u2, v).

– In the second case, no path of the coloring of G′ ends on v. Let Q be a path
of the coloring such that Q = (Q1, v1, v, v2, Q2), with v2 another neighbor of v.
Recoloring: In G, we replace Q with a path Q′ = (Q1, v1, v, u1) and we use
the extra color on the path P = (u1, u2, v, v2, Q2).

v1

v2

u1 u2

(s)

 

v1

v2
Q

R  u1 u2

v1

v2

P

P

Q

Q

R

R

• (s): The two special vertices u1, u2 have degree 2: they are non-adjacent and have
two common neighbors v1, v2 that are adjacent. The vertex v2 has an odd degree in
G.
Reduction: In the reduced graph, v2 keeps an odd degree: let Q be a path of the
coloring that ends on v2.
Recoloring: In G, we deviate the color of v1v2 in G′ on u1, and we extend the path
Q on the edge v2u2.
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v1

v2

u1 u2

(t)

 

v1

v2
Q

R

 u1 u2

v1

v2
Q

R

P

P

P

Q

Q

R

• (t): The two special vertices u1, u2 have degree 2: they are non-adjacent and have
two common neighbors v1, v2 that are adjacent and have an even degree in G.
Reduction: In the reduced graph, we remove the edge v1v2. The vertices v1, v2
have odd degrees in G′: let Q,R be two paths of the coloring that end on v2, v1
respectively.
Recoloring: In G, we extend the path Q on the edge v2u2 and the path R on v1u1.
We use the extra color on the path P = (u1, v2, v1, u2).

v1

v2

v3v4u1 u2

(u)

 

v1

v2

v3v4
Q

R

 u1 u2

v1

v2

v3v4
P

R P

Q

Q

P

P

R

• (u): The special vertex u1 has degree 2, and u2 has degree 3 or 4. The special
vertices u1, u2 are non-adjacent and have two common neighbors v1, v2 that are
adjacent. The vertex u2 has another neighbor v3 adjacent to v2. The vertex u2 may
have another neighbor v4.
Recoloring: In G, we deviate the color of the edge v1v2 in G′ on u1 and the color
of v2v3 on u2. We use the extra color on the path P = (v3, v2, v1, u2) and maybe on
the edge u2v4 if it belongs to G.

Lemma 3.1.2. The reduction rules of configurations (a), (b), . . . , (u) are valid.

Proof. For each rule, we need to check three properties: when the rule applied to a planar
graph G, the reduced graph G′ produced is planar; the recoloring function yields a path
coloring (i.e. does not introduce cycles); and the number of additional colors used in the
recoloring function is at most

⌊
|V (G)|−|V (G′)|

2

⌋
.

For the first property, observe that in all considered rules except rule (h), an edge ab
added by the reduction function replaces a deleted path of length 2 or 3 between a and b
that goes through 1 or 2 special vertices. Hence the planarity is preserved in these cases.
Now, let us consider rule (h). Let G′′ be the graph obtained from G by removing the
vertices u1 and u2 and their incident edges. When removing u1 and its incident edges,
we obtain a face f1 incident with v3, v1 and v2. For the same reason, v4, v1 and v2 have
a common face f2. If f1 6= f2, since v1, v2 is a separating pair that separates v3 from v4,
there exists a planar embedding of G′′ such that v3 and v4 are on the same face. Hence in
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both cases there is an embedding of G′′ such that v3 and v4 are incident with a common
face. Hence we can add the edge v3v4 to obtain G′ while preserving the planarity.

The third property is easy to check, since the rule (a) does not introduce any new
color, and all other rules have 2 special vertices and introduce exactly 1 new color (the
color red on the figures, inducing the new path P ).

Finally, let us check the second property. We can easily check on each rule that when
the recoloring function f c is applied on a planar graph G and a coloring pc of the reduced
graph G′, the coloring f c(G, pc) provides a color for each edge of G (as a reminder, the
edges drawn in black in the second and third drawings of a rule keep their color from the
pre-coloring pc in G).

In G, the only edges of the new path P are the ones represented in the third drawing
of each rules. One can easily check for each rule that these edges form a path. For colors
used in the pre-coloring pc, except in rules (h) and (r), we only perform two types of
modification, deviations and extensions. Since each special vertex is only involved in one
such modification, each color of pc induces a path in G.

In the first case of rule (r), we do a simple path extension as before. In the second
case, we first split an existing path into two paths, using the new color (the path P in
red). Then we extend these two subpaths toward special vertices, hence we obtain a path
coloring.

For rule (h), heavier modifications are made on the path Q in G′. In rule (h1), the
edge v3v4 is replaced by the path (v3, u1, v2, u2, v4). Since the vertex v2 explicitly avoids
the path Q, the resulting coloring does not introduce cycles. In rule (h2), the vertex v5
avoids the subpath Q2 of Q, i.e. the section after v4, and v6 avoids Q1, i.e. the section
before v2. Hence in the final coloring, P and Q′ are paths. In rule (h3), we can easily
check that Q′ is a path. Moreover, v5 avoids the section R1 of Q, i.e. the section between
v2 and v3. Since by planarity v6 cannot touch R1, then P is a path. The same argument
applies to rule (h4) with both v5 and v6 avoiding the section R′′1, the former by hypothesis
and the latter by planarity. In rule (h5), Q′ is a path since v5 cannot touch the section
R′1 of Q by hypothesis, and the section Q2 by planarity. Similarly, P is a path since v6
cannot touch the section R1 of Q by hypothesis, and the section R′′1 by planarity. In rule
(h6), we can easily check that Q′ is a path. Since both v5 and v6 avoid the section R′1 of
Q, then P is a path. This completes the examination of all cases.

The second group of rules we consider are given by the neighborhood of two vertices
u1 and u2 of degree at most 4 together with a shortest path S joining them, such that
|N(u1) ∩ N(u2)| ≤ 1. Note that this includes the case where u1 and u2 are adjacent,
with no common neighbors. These rules can be described as the product of two so-called
elementary partial rules, that specifies the behavior of the rule around each endpoint of
the path. In Chapter 4, we will introduce more general rules and partial rules to deal
with (CII) configurations.

More formally, an elementary partial configuration Ci is a configuration defined over the
neighborhood of one special vertex ui, with one identified incident edge, called subdivision
edge. We say that a neighbor v of ui is a remaining neighbor of ui if uiv is not the
subdivision edge.

Given a graph G, two vertices u1, u2 of G, a shortest (u1, u2)-path S, and two elemen-
tary partial configurations C1 and C2, the path composite configuration ({C1(u1), C2(u2)}, S)
is defined as the following configuration: u1 (resp. u2) satisfies the partial configuration
C1 (resp. C2), the path S contains the subdivision edges of C1 and C2 and does not touch
the other neighbors of u1 and u2. For ease of notation, we may simply write C1 ⊕ C2.

58



An elementary partial rule is a rule Ri = (Ci, f r
i , f

c
i ) associated with an elementary

partial configuration Ci, a partial reduction function f r
i and a partial recoloring function

f c
i . The partial reduction function f r

i of the rule is encoded by a set Oi ⊆ {add , remove}×
E(Ci) with straightforward semantics. In particular, we can identify all the vertices of
V (G)\N(ui) between G and f r

i (G). The partial recoloring function defines the coloring of
the edges, based on existing colors plus an extra color (represented as red on the figures)
used in part for the edges of S.

If R1 = (C1, f r
1 , f

c
1) and R2 = (C2, f r

2 , f
c
2) are two elementary partial rules, u1, u2 two

vertices and S a shortest (u1, u2)-path, the path composite rule ({R1(u1),R2(u2)}, S) is
the reduction rule (Cc, f r

c , f
c
c ) associated with the path composite configuration

({C1(u1), C2(u2)}, S), and is defined as follows. Let U = {u1, u2}. The reduction function
f r
c is defined by f r

c (G) = (f r
1 ◦ f r

2 (G)) \ (U ∪ E(S)), i.e. the successive application of the
operations in O2 and O1 and the removal of the special vertices and the edges of S to
form the reduced graph G′.

Let pc be a coloring of G′ = f r
c (G), and cS a 1-coloring of the path S. The recoloring

function f c
c is defined by f c

c (G, pc) = f c
2(G, f c

1(f r
2 (G), pc ∪ cS)); in other words, the path

S is added to G′ and colored with cS, then the reduction of C1 is undone, the edges in the
neighborhood of u1 are colored according to the partial recoloring function f c

1 , and finally
the reduction of C2 is undone (to obtain G) and the edges in the neighborhood of u2 are
colored according to the partial recoloring function f c

2 .

Let us present the list of elementary partial rules that we consider in this chapter. We
extend our graphical formalism by representing the subdivision edge as a red edge with a
double arrow ( ).

Note again that we justify the planarity of the reduced graph and the validity of the
rules formed by two elementary partial rules in Lemma 3.1.3 after the definitions.

List of the elementary partial configurations:

v1 u1

(CEXT )

 
v1

 
u1v1

P

• (CEXT ): The special vertex u1 has exactly one remaining neighbor v1.
Recoloring: In G, we extend the extra color on the edge u1v1.

v1

v2
u1

(CV )

 

v1

v2

Q  
u1

v1

v2

Q

Q

• (CV ): The special vertex u1 has exactly two remaining neighbors v1, v2 that are
non-adjacent.
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1.
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v2

v1

u1

(CNe)

 

v2

v1
Q

 
u1

v2

v1
Q

Q

P1

• (CNe): The special vertex u1 has exactly two remaining neighbors v1, v2 that are
adjacent. The vertex v1 has an even degree in G.
Reduction: In the reduced graph, v1 has an odd degree: let R be a path of the
coloring of G′ that ends on v1.
Recoloring: In G, we extend the path R on the edge v1u1.

v2

v1

u1

(CNo)

 

v2

v1
Q

 
u1

v2

v1

P1

Q
Q

P1

• (CNo): The special vertex u1 has exactly two remaining neighbors v1, v2 that are
adjacent. The vertex v1 has an odd degree in G.
Reduction: In the reduced graph, we remove the edge v1v2. The vertex v1 keeps
an odd degree in G′: let R be a path of the coloring of G′ that ends on v1.
Recoloring: In G, we extend the path R on the edge v1u1, and we extend the extra
color on the edges u1v2 and v2v1.

v1

v3

v2 u1

(C4a)

 

v1

v3

v2 Q

 
u1

v1

v3

v2 Q

Q P

P

• (C4a): The special vertex u1 has exactly three remaining neighbors v1, v2, v3, such
that v1, v2 are non-adjacent (remark that v1, v2 are not necessarily consecutive in
the cyclic order of the neighbors of u1).
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1 and extend the extra color on
the edge u1v3.
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v1

v3

v2 u1

(C4b)

 

v1

v3

v2 Q

 
u1

v1

v3

v2 Q

Q

PP

P

• (C4b): The special vertex u1 has exactly three remaining neighbors v1, v2, v3, such
that the edges v1v2 and v2v3 belong to G.
Reduction: In the reduced graph, we remove the edge v2v3.
Recoloring: In G, we deviate the color of v1v2 on u1 and extend the extra color on
the edges u1v3, v3v2, v2v1.

For convenience, we define some aliases which group several elementary partial configu-
rations together. Note that these aliases are not disjoint: the configuration (CV ) appears
in both (C+V ) and (CN), and these two aliases are particular cases of (C+N).

v1

v3

v2 u1

(C+V )

:= { u1

(C1a)

|
v1

v2
u1

(CV )

|
v1

v3

v2 u1

(C4a)

}

• (C+V ): The special vertex u1 has either 0, 2 or 3 remaining neighbors v1, v2, v3, such
that at least two of them are non-adjacent (not necessarily consecutive in the cyclic
order of the neighbors). If it has 0, this is configuration (C1a); if it has exactly 2
and they are non-adjacent this is configuration (CV ); and if it has three remaining
neighbors, and at least two of them are non-adjacent, this is configuration (C4a).

v1

v2
u1

(CN)

:= {
v1

v2
u1

(CV )

|
v2

v1

u1

(CNe)

|
v2

v1

u1

(CNo)

}

• (CN): The special vertex u1 has 2 remaining neighbors v1, v2. If v1, v2 are non-
adjacent, this is configuration (CV ). Otherwise, if one of v1, v2 has an even degree
in G, this is configuration (CNe), and if both have an odd degree in G, this is
configuration (CNo).
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v1

v3

v2 u1

(C+N)

:= { u1

(C1a)

| v1 u1

(CEXT )

|
v1

v2
u1

(CN)

|
v1

v3

v2 u1

(C4a)

|
v1

v3

v2 u1

(C4b)

}

• (C+N): The special vertex u1 has between 0 and 3 remaining neighbors v1, v2, v3. If
it has 0, 1 or 2, this is configuration (C1a), (CEXT ) and (CN) respectively. If it has 3
remaining neighbors, then if two of them (not necessarily consecutive in the cyclic
order) are non-adjacent this is configuration (C4a) and otherwise (C4b).

Since two partial rules must be applied on the same graph, we need to make sure
that they are compatible and do not interfere with each other. For example, if two (CV )
rules were to be applied on the same non-edge v1v2, the color of v1v2 in the reduced
graph would have to be deviated to two different special vertices, creating a cycle in the
path decomposition. Alternatively, if two (CNe) or (CNo) configurations share a remaining
neighbor v, then the extra color may be extended to v from both remaining neighbors,
again creating a cycle in the decomposition. The following lemma provides sufficient
conditions of compatibility between partial rules, which are satisfied in the composite
configurations given in the proof of Lemma 3.3.1 (p. 65).

Lemma 3.1.3 (Sufficient conditions of compatibility between partial rules). Let u1, u2 be
two special vertices, and S a shortest (u1, u2)-path, let Ca ∈ (C+N) and Cb ∈ (C+N), and let
Ra,Rb be the elementary partial rules associated with Ca, Cb respectively. Then the path
composite rule ({Ra(u1),Rb(u2)}, S) is valid if the following conditions are satisfied:
• If none of Ca, Cb are (CV ) or (C4a) configurations, then u1, u2 share no remaining
neighbors;
• If Ca is a configuration (CV ) or (C4a), then u1 shares at most one remaining neighbor
v with u2, and v is non-adjacent to at least one other remaining neighbor of u1 (i.e.
v is not v3 in the definition of (C4a)).

Proof. We need to check three properties: when the path composite rule is applied on a
planar graph G, the reduced graph G′ produced is planar; the recoloring function does
not introduce cycles; and the number of additional colors used in the recoloring function
is at most b |V (G)|−|V (G′)|

2
c.

The first property is easy to check, as in all considered elementary partial rules, an
edge v1v2 added by the reduction function replaces a deleted path of length 2 between v1
and v2 that goes through a special vertex, and each special vertex is involved in at most
one such operation.

For the the third property, observe that the rule ({Ra(u1),Rb(u2)}, S) involves two
special vertices. The recoloring function only uses colors from the pre-coloring, plus 1
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new color (cS in the definition, the path P drawn in red on the figures) which is exactly
b |V (G)|−|V (G′)|

2
c.

For colors used in the pre-coloring, we only perform two types of modification: devia-
tions and extensions. Since each special vertex is involved in at most one such modifica-
tion, the recoloring function does not introduce cycles involving these colors.

It remains to check that the set P of edges colored with the new color in cS is indeed
a path. It is made up of a shortest path S between the two special vertices, and maybe
some edges incident with only remaining neighbors and special vertices. Let Pa (resp. Pb)
be the edges of P in the recoloring of Ra (resp. Rb). So P = S ∪ Pa ∪ Pb. We can check
that each elementary partial rule does not introduce cycles within the elementary partial
configuration, i.e. S ∪ Pa and S ∪ Pb are paths. If Ca and Cb do not share remaining
neighbors, then Pa and Pb are vertex-disjoint, and thus P induces a path. Now assume
that Ca is a configuration (CV ) or (C4a), that (w.l.o.g.) the vertex v1 of Ca (w.r.t. the
notations in the definition of (CV ) and (C4a)) also belongs to Cb, and that the other
remaining neighbors of Ca and Cb are disjoint. Since v1 does not touch the edges of Pa,
then Pa and Pb are vertex-disjoint and P is a path. This concludes the proof.

3.2 Sufficiency of the (CI) rules
We prove with Lemma 3.2.2 that, because of the reduction rules associated with configu-
rations (a), (b), . . . , (u), (C+N) ⊕ (C+N), an MCE G cannot contain any of them. We first
show that it is easy to derive a contradiction if the reduced graph G′ does not contain K3

or K−5 components, by building a good coloring of G. Then, we assume that G′ contains
some K3 or K−5 connected components, and we build once again a good (path-)coloring of
G, with the help of an intermediate coloring of G′ with paths and cycles. The proof then
combines cycles and paths together to save colors. Let us introduce a relevant lemma
from [18]. The exceptional graph is a graph consisting of a cycle C of length 5 and a path
P , such that V (C) ⊆ V (P ) and V (C) induces a K−5 . We restate here Lemma 2.1. from
[18].

Figure 3.4: The exceptional graph

Lemma 3.2.1 ([18]). Let C be a cycle and P a path, such that C and P are edge-disjoint.
If 1 ≤ |V (C)∩V (P )| ≤ 5, then E(C)∪E(P ) can be decomposed into 2 paths, unless C∪P
is the exceptional graph.

Remark: Lemma 3.2.1 cannot be applied to K−5 , as in any decomposition of K−5 into
a cycle of length 5 and a path of length 4, the path and the cycle form the exceptional
graph.

There are several possible decompositions of the exceptional graph into a path and a
cycle. The following observation states that in any such decomposition, the path and the
cycle satisfy the properties of the definition.
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Observation 1. Let C be a cycle and P a path, such that C ∪ P forms the exceptional
graph. Then C has length 5, V (C) ⊆ V (P ) and (C ∪ P )[V (C)] (the subgraph of C ∪ P
induced by the vertices of C) is a K−5 .

Proof. There are exactly 5 vertices of degree at least 3 in C ∪ P . Since the vertices of
(C \ P ) ∪ (P \ C) have degree 1 or 2, we deduce that |C ∩ P | = 5.

(C∪P )[V (C∩P )] is aK−5 , so if there is an edge e ∈ C that does not belong to E(C∩P ),
then there is a 2-path decomposition of K−5 , a contradiction. So E(C) ⊆ E(C∩P ), hence
V (C) = V (C ∩ P ). We deduce that V (C) ⊆ V (P ), C has length 5 and (C ∪ P )[V (C)] is
a K−5 .

Lemma 3.2.2. An MCE does not contain any of the configurations (a), (b), . . . , (u), and
does not contain a path composite configuration (C+N) ⊕ (C+N) that satisfies the conditions
of Lemma 3.1.3 (p. 62).

Proof. Let us consider such a configuration X and let RX = (X, f r
X , f

c
X) be its associated

reduction rule. By Lemmas 3.1.2 (p. 57) and 3.1.3 (p. 62), RX is valid. Let G be an MCE
containing the configuration X, and G′ = f r(G) its reduced graph.

Let n′1, . . . , n′p be the sizes of the connected components G′1, . . . , G′p of G′. Observe
that

∑
j≤k n

′
j = |V (G′)|. Observe that each G′i that is not a K3 nor a K−5 component

is a connected planar graph that is smaller than the minimum counterexample G, hence
these G′i each admit a good coloring, using bn

′
i

2
c colors colors. Each K3 component can

be decomposed into 1 cycle and each K−5 component into 1 path and 1 cycle. Then
G′ admits a coloring pc into paths and cycles with

∑p
i=1b

n′
i

2
c ≤ b |V (G′)|

2
c colors. Since

the reduction rule is valid, G admits a coloring c0 into paths and cycles with at most
b |V (G′)|

2
c+ b |V (G)|−|V (G′)|

2
c ≤ b |V (G)|

2
c colors, such that no new cycles are created.

Observe that all the cycles in c0 are vertex-disjoint. Indeed, the cycles in pc are
vertex-disjoint because they belong to different connected components of G′; the cycles
may have been deviated into longer cycles in G, but since the internal vertices of the
deviated sections are all special vertices, and since each special vertex is involved in at
most one deviation, then no vertex of G can belong to the intersection of two cycles of c0.

We build iteratively a good coloring c of G, by starting from c0 and using Lemma 3.2.1
(p. 63) at each iteration to replace a cycle and a path of c by two new paths that decompose
the same set of edges. We first consider the case where X 6= (a) and X 6= (h).

We successively treat the K−5 and K3 components in G′. First, let us consider a
component K in G′ that is a K−5 , colored with a cycle C ′ of length 5 and a path P ′ of
length 4 in pc. C ′ is turned into a cycle C0 from c0 after possibly some deviations, and
Lemma 3.2.1 has not been applied to it yet, so C0 is also induced by a color of c. P ′ may
have been extended (such as with path Q in rule (CNe)) and deviated to special vertices,
into a path P0 of G induced by a color of c0. So V (P0) ⊆ V (P ′) ∪ U , and since each
special vertex is involved in at most one deviation or one extension, then P0 is disjoint
from the cycles of c0 different from C0, so Lemma 3.2.1 has not been applied to it in
previous iterations, and thus P0 is also induced by a color of c. Finally, let P̂ be a path
induced by a color of c such that V (P̂ ) ∩ V (C0) 6= ∅ and P̂ 6= P0. Such a path P̂ exists
because G is connected and the cycles in c are disjoint.

Observe that V (P0) ∩ V (C0) = V (K), so |V (P0) ∩ V (C0)| = 5. If there is at least
one deviation on C ′, then by Observation 1 (p. 64), C ∪ P does not form the exceptional
graph. We may then apply Lemma 3.2.1 (p. 63) on C and P . Otherwise there is no
deviation on C ′, so C0 = C ′ (of length 5). At least 2 edges of G[V (C0)] belong to P0, and
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thus by Observation 1 (p. 64), C0∪ P̂ does not form the exceptional graph. We can apply
Lemma 3.2.1 (p. 63) on C0 and P̂ , as |V (C0) ∩ V (P̂ )| ≤ |V (C0)| = 5.

Now consider the case where K is a K3, colored by a cycle C ′ of length 3 in G′. Again
let C be the cycle in G that is induced by the same color in c as C ′ in pc, after possibly
some deviations, and let P̂ be a path induced by a color of c such that V (P̂ )∩V (C) 6= ∅.
At most two deviations were performed on C ′, so |V (C)| ≤ 5. We apply Lemma 3.2.1
(p. 63) on C and P̂ , unless they form the exceptional graph. Assume it is the case and
C is disjoint from any other path in the coloring of G. By Observation 1 (p. 64), C has
length 5 and thus contains both special vertices. Since G is not a K−5 , P̂ has at least
one other edge, necessarily from one special vertex to a vertex outside V (C). G fits the
description of the configuration (m2). In the rule associated with (m2), if the reduced
graph contains a K3 component, it contains only the vertex v2 (in the definition of the
rule), and its cycle is not deviated to the special vertices, a contradiction.

In all cases, we were able to find a cycle and a path that do not form the exceptional
graph. We apply to them Lemma 3.2.1 (p. 63) and obtain two new paths that decompose
them. We replace the cycle and the path in c by the two new paths, to obtain a coloring of
G that uses the same number of colors and contains one less cycle. After this method has
been successively applied to all K3 and K−5 appearing in G′, c that has the right number
of colors and contains only paths, a contradiction with G being a counterexample.

We are left with rules (a) and (h). If X = (a), observe that the reduced graph G′ is
connected. If G′ = K3 or G′ = K−5 , then G is the same graph with one subdivided edge,
so we can easily find a good coloring of G. Finally, let us consider the case X = (h).
First note that if a K3 appears in G′, it contains only v5 or only v6 among the vertices
represented in the figures. It cannot contain both as there would be a path from v3 to v4
in G, a contradiction with the definition of (h). A K−5 in G′ contains only v5, only v6, or
only v1, v2, v3, v4 among the vertices represented. In the latter case, the K−5 must be on
vertices v1, v2, v3, v4 and another vertex v7. If there is a non-edge between v1 and v2, then
v7 is adjacent to v1, v2, v3, v4. Then the path v3, v7, v4 contradicts the definition of (h).
Thus, there is an edge v1v2, and we may assume w.l.o.g. that v7 is adjacent to v1, v2, v3.

If a K3 (resp. K−5 ) component appears in G′ and contains (only) v5 or v6, then the
red path P or the blue path Q in f c

X(G, pc) can easily be extended to color both the path
and the K3 (resp. K−5 ) with 2 colors (resp. 3 colors) (which is equivalent to applying
Lemma 3.2.1, p. 63). Now assume that v1, v2, v3, v4, v7 form a K−5 in G′. We color it in
G′ with the path R = (v7, v3, v1, v2, v4) and a cycle Q = (v7, v1, v4, v3, v2). We thus place
ourselves in case 3 of (h), treated with rule (h3). When applying the recoloring function,
we change the color of the edge u2v4 from Q (blue) to R (green), to turn Q into a path.
We thus built a good coloring of G in all cases, a contradiction.

3.3 The rules cover all cases
Lemma 3.3.1. If a graph contains a configuration (CI) and is different from K3, then it
contains at least one configuration among (a), (b), . . . , (u), (C+N) ⊕ (C+N), (C+V ) ⊕ (C+N),
in which case the conditions of Lemma 3.1.3 (p. 62) are satisfied.

Proof. We make a case analysis, described by the tree of Figure 3.5. For each inner node,
we define the configurations of its children, and we show that if a graph contains the
configuration described by the inner node, then it contains (at least) one of its children
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configurations. The configurations drawn inside a frame are the leaves of the tree, and
the others are inner nodes.

u1 u2

4− ⊕ 4−

⇒
v1

v2

v3

v4

v5

v6
u1 u2

(0C)

|
v2

v1

v

v3

v4

u1 u2

(1C)

|

v1 v2

v

v′

u1 u2

(2C)

|
v

v′

v′′

u1 u2

(3C)

• 4−⊕ 4−: In the following configurations, let u1, u2 be two special vertices that form
a configuration (CI) and let P be a shortest path between u1 and u2.
– (0C) (0 common remaining neighbor): the vertices u1 and u2 have degree 1, 2,

3 or 4; the vertices u1 and u2 have no common remaining neighbor.
– (1C) (1 common remaining neighbor): the special vertices have degree 2, 3 or

4; the path P has length 1 or 2; the special vertices have exactly one common
remaining neighbor v.

– (2C) (2 common remaining neighbors): the special vertices have degree 3 or
4; the path P has length 1 or 2; the special vertices have exactly two common
remaining neighbors v and v′.

– (3C) (3 common remaining neighbors): the special vertices have degree 4; the
path P has length 1 or 2; the special vertices have exactly three common
remaining neighbors v, v′ and v′′.

Depending on the number of common remaining neighbors between u1 and u2, we
have one of the configurations (0C), (1C), (2C) or (3C).
Since P is a shortest path between u1 and u2, when u1 and u2 have a common
neighbor, P has length at most 2, hence all cases are covered.

v1

v2

v3

v4

v5

v6
u1 u2

(0C)

⇒
v1

v3

v2 u1

(C+N)

⊕
v4

v6

v5 u2

(C+N)

• (0C): The neighborhoods of both special vertices match the elementary partial
configuration (C+N). Since u1 and u2 have no common remaining neighbors, we
have a path composite configuration (C+N) ⊕ (C+N) that satisfies the conditions of
Lemma 3.1.3 (p. 62).
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v2

v1

v

v3

v4

u1 u2

(1C)

⇒
v2

v1

v

v4

v5

u1 u2

(1Ca)

|
v1

v2

v

u1 u2

(2x)

|

v1 v2

v

u1 u2

(33b)

|
v1 v2

v3v4

v

u1 u2

(44b)

|

v1

v2

v3 v4u1 u2

(Rx)

• (1C):
– (1Ca): The special vertex u1 has degree 3 or 4 and the special vertex u2 has

degree 2, 3 or 4; the special vertices have one common remaining neighbor v
and u1 and u2 are linked by a path P of length 1 or 2; moreover u1 has a
remaining neighbor v1 that is not adjacent to v.

– (2x): The special vertex u1 has degree 2 and the special vertex u2 has degree 2,
3 or 4; the special vertices have one common remaining neighbor v and u1 and
u2 are linked by a path P of length 1 or 2; if the degree of u2 is greater than
2, let v1 and possibly v2 be its other remaining neighbors and these neighbors
are adjacent to v.

– (Rx): The special vertices u1 and u2 have degree 3 or 4; u1 and u2 have 2
common neighbors v1 and v2; each special vertex has a remaining neighbor (v3
and v4 respectively) that is adjacent to v1 and v2.

– (33b): The special vertices u1 and u2 have degree 3; u1 is adjacent to u2 and
they have a common neighbor v.

– (44b): The special vertex u1 has degree 3 or 4 and the special vertex u2 has de-
gree 4; u1 is adjacent to u2 and they have a common neighbor v; the remaining
neighbors of u1 are adjacent to v.

If there is a remaining neighbor of a special vertex that is not adjacent with the
common remaining neighbor, then we have the configuration (1Ca). Otherwise,
every remaining neighbor is adjacent to the common neighbor v. If at least one of
the special vertices has degree 2, then we have the configuration (2x). Otherwise,
every special vertex has degree 3 or 4. If the distance between the special vertices
is 2, then u1 and u2 have 2 common neighbors (let us call them v and v′). In this
case, all the other neighbors are adjacent to both of them (otherwise we are back in
case (1Ca), possibly changing the role of v and v′). In this case, we have the con-
figuration (Rx). Otherwise, the special vertices are adjacent. If both vertices have
degree 2, we have the configuration (33b), otherwise we have the configuration (44b).
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v1

v2

v

u1 u2

(2x)

⇒
v1

v2

u1 u2

(22n)

|
v1

v2

v

u1 u2

(q)

| v

u1 u2

(r)

|
w

v

u1 u2

(s)

|
w

v

u1 u2

(t)

|
v1

v2

v3v4u1 u2

(23n)

|

w

v

v1v2u1 u2

(u)

• (2x):
– (22n): The two special vertices u1 and u2 have degree 2; they have two common

neighbors v1 and v2; moreover v1 and v2 are not adjacent.
– (23n): The special vertex u1 has degree 2 and u2 has degree 3 or 4; u1 and u2

have two common neighbors v1 and v2; v1 and v2 are not adjacent; u2 has a
neighbor v3 that is adjacent to v2.

In this case, u1 has degree 2, and u1, u2 are either adjacent or share a neighbor w
in addition to their common remaining neighbor v. First let us assume that u2 has
degree 2. If u1, u2 are adjacent, and since the graph is different from K3, then v has
degree at least 3 and this is configuration (r). Otherwise, u1, u2 are non-adjacent. If
v, w are non-adjacent, this is configuration (22n), and otherwise this is configuration
(s) if one among v, w has an odd degree, and configuration (t) if both have an even
degree.
Now assume u2 has degree at least 3. If u1, u2 are adjacent this is configuration (q),
and otherwise this is configuration (23n) if v, w are non-adjacent, or (u) otherwise.
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v1

v2

u1 u2

(22n)

⇒
v1 v2

u1(a)

• (22n): In this case have the configuration (a) around special vertex u1.

v1

v2

v3v4u1 u2

(23n)

⇒
v1 v2

u1(a)

• (23n): In this case have the configuration (a) around special vertex u1.

v2

v1

v

v4

v5

u1 u2

(1Ca)

⇒
v

v2

v1 u1

(C+V )

⊕
v

v4

v5 u2

(C+N)

• (1Ca): The neighborhood of the first special vertex matches the elementary partial
configuration (C+V ) and the neighborhood of the second one matches the elementary
partial configuration (C+N). Moreover both special vertices have only one remain-
ing neighbor in common, v, which is non-adjacent to v1. Hence the conditions of
Lemma 3.1.3 (p. 62) are satisfied.

v1 v2

v3v4

v

u1 u2

(44b)

⇒
v4 v3

v1 v2

v

u1 u2

(c)

• (44b): Since the graph is planar, at least one of the remaining neighbors of u2 is not
adjacent to the remaining neighbor of u1. Hence we have the configuration (c).
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v1 v2

v

u1 u2

(33b)

⇒
v1

v

v2

u1
u2

(b)

| v1 v2
v

u1 u2

(33o)

|

v1 v2
v

u1 u2

(e)

• (33b):
– (33o): The special vertices u1 and u2 have degree 3; they are adjacent and

they have a common neighbor v of odd degree; each special vertex has another
neighbor of odd degree (v1 and v2 respectively) that is adjacent to v.

If there is a special vertex with an even non-common remaining neighbor, we are in
the configuration (b). Otherwise, depending of the parity of the common neighbor
we are in configuration (33o) (odd) or in configuration (e) (even).

v1 v2
v

u1 u2

(33o)

⇒
v1 v2

v3 v4

v

u1 u2

(c)

| v1 v2
v

u1 u2

(d)

• (33o): We split the case depending on whether there is an edge between v1 and v2,
the associated rules are (c) if there is not and (d) otherwise.

v1

v2

v3 v4u1 u2

(Rx)

⇒

v1

v2

v5 v6

v3 v4u1 u2

(f)

|

v1

v2

v5 v6

v3 v4u1 u2

(g)

|

v1

v2

v5 v6
v3 v4u1 u2

(h)
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• (Rx): If the two common neighbors are non-adjacent we are in configuration (f),
Otherwise, if the two common neighbors form a separating pair, then we are in
configuration (h), otherwise we are in configuration (g).

v1 v2

v

v′

u1 u2

(2C)

⇒
v1

v2

v

v′

u1 u2
(Cr)

|
v

v′

u1 u2
(k)

|

v

v′

u1 u2
(l)

| v′

v

v′′u1 u2
(m1)

|
v

v′

v1 v2v′′u1 u2
(m2)

|

v

v′

v1 v2u1 u2
(n)

• (2C):
– (Cr): the special vertex u1 has degree 3 or 4 and the special vertex u2 has

degree 4; u1 and u2 are linked by a path P of length 1 or 2; they have two
common remaining neighbors v and v′; moreover, v and v′ are not adjacent.

If there are two common neighbors that are non-adjacent, then we are in configura-
tion (Cr) if at least one special vertex has degree 4, and otherwise in configuration (k)
or (l) depending on whether one of these neighbors has an even degree. Otherwise,
all common neighbors are pairwise adjacent. If the special vertices are adjacent,
then we are in configuration (n). Otherwise, the path P has length 2 and a middle-
vertex v′′. If both special vertices have degree 3, then we are in configuration (m1),
and if at least one has degree 4, we are in configuration (m2).
Remark: Note that if the graph is a K−5 , then it is a configuration (m1), but in
this case the associated rule defines a coloring of the graph with 3 colors. This case
does not occur if the graph is an MCE.
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v1

v2

v

v′

u1 u2
(Cr)

⇒
v1

v2v

v′

u1 u2
(i)

|
v1

v2v

v′

u1 u2
(j)

• (Cr): If there is a non-common remaining neighbor that is not adjacent to a com-
mon remaining neighbor we are in configuration (i), otherwise at least one remaining
neighbor is adjacent to both common remaining neighbors and we are in configura-
tion (j).

v

v′

v′′

u1 u2

(3C)

⇒
v

v′

v′′

u1 u2

(o)

|
v

v′

v′′

u1 u2

(p)

• (3C): Since the graph is planar, there are at least two non-adjacent common remain-
ing neighbors. If none of them are adjacent we are in configuration (o), otherwise
we are in configuration (p).

The proof of the main lemma of this chapter is now straightforward.

Proof of Lemma 3.1.1 (p. 45). Let G be an MCE, and assume it contains a configuration
(CI). By Lemma 3.3.1, G contains a configuration among (a), (b), . . . , (u), or a path
composite configuration (C+V ) ⊕ (C+N) or (C+N) ⊕ (C+N). Lemma 3.2.2 (p. 64) provides a
contradiction.
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4− ⊕ 4−

(0C)

(C+N) ⊕ (C+N)

(1C)

(1Ca)

(C+V ) ⊕ (C+N)

(2x)

(22n)

(a)

(q)

(r)

(s)

(t)

(23n)

(a)

(u)

(33b)

(b)

(33o)

(c)

(d)

(e)

(44b)

(c)

(Rx)

(f)

(g)

(h)

(2C)

(Cr)

(i)

(j)

(k)

(l)

(m1)

(m2)

(n)

(3C)

(o)

(p)

Figure 3.5: Tree of implications between configurations.
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Chapter 4

Elimination of vertices of degree 5

In this chapter, we prove the following lemma, which constitutes the second property of
Lemma 2.6.2.

Lemma 4.0.1. An MCE does not contain a configuration (CII).

As a reminder, a planar graph G has a configuration (CII) if it is almost 4-connected
w.r.t. a 4-family U , i.e. a set of four vertices of degree 5; we say that G has a (CII)
configuration w.r.t. U . The proof of Lemma 4.0.1 is given at the end of this chapter, and
uses a method similar to the proof of Lemma 3.1.1 (p. 45) in the previous chapter.

In this chapter, we take care of our four special vertices by generalizing the tools of
the previous chapter. Instead of considering a shortest path like in (CI) rules, we use
a subdivision, either a K4 or a C4+-subdivision (see Figure 4.3), and again remove it
in the reduction, then color it with our extra colors. These structures have the same
convenient properties as the shortest path of the (CI) rules: they can be colored with 2
extra colors, and there is an end of an extra color on each of the four special vertices,
which is again helpful to take care of all the missing edges. We generalize the concept
of elementary partial rule and consider patterns that recolor the neighborhoods of one or
two special vertices at once. Similarly to the distant special vertices in the (CI) rules,
when the remaining neighbors of the special vertices are disjoint, we combine four “normal”
patterns (called CN like in Chapter 3 ) to form a complete reduction rule. Figure 4.1 shows
four special vertices u1, u2, u3, u4 linked by a K4-subdivision S, with disjoint remaining
neighbors and thus treated with the pattern CN .

u1 u2

u3

u4

S

S

S

S

S

S

CN CV

CV

CN

 

Q2

Q3

Q1

Q4

 

u1 u2

u3

u4

P1

P2

P2

P1

P2

P1

P1

Q1

Q2

Q2

Q3 Q3

Q4

P1

Figure 4.1: A (CII) reducible configuration featuring CN patterns
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u1 u2

u3

u4

S S

S

S

S

S S

S
S

 

u1 u2

u3

u4

P1

P2

P2 P1

P1
P1

P2 P2

CV CV

CN

CN

Figure 4.2: A (CII) configuration where u1, u2 form a close problem and u3 a distant
problem. The close problem is eliminated by redirection of the subdivision S, and the
distant problem is inactivated by the 2-coloring of S.

Several problems can occur however, which we classify in two types, distant and close
problems. A special vertex forms a distant problem when its remaining neighbors are
adjacent and touch the subdivision. If left untreated, a distant problem may cause a
CN pattern to create a cycle in the final coloring. The distant problems are eliminated
in two ways: either by modifying the subdivision to assign new remaining neighbors
to the problematic special vertices, or by inactivating them by finding a 2-coloring of
the subdivision that is compatible with the CN patterns treating the remaining distant
problems. Figure 4.2 features a (CII) configuration with a K4-subdivision S, where the
special vertex u3 causes a distant problem on a (u2, u4)-path of S. This problem is
inactivated by a carefully chosen 2-coloring of S.

The close problems occur when two special vertices share some remaining neighbors,
with these remaining neighbors possibly touching the subdivision as well. These problems
are treated in a custom manner, by redirecting the subdivision to assign new remaining
neighbors to the special vertices and finding a compatible set of patterns to treat all four
special vertices. In Figure 4.2, u1 and u2 initially form a close problem, which is eliminated
by a redirection of the subdivision. The special vertices u1, u2 are then both treated with
the CV pattern.

More precisely, we first treat the cases with at least 3 distant problems (and no close
ones), in the distant lemma (Lemma 4.5.5, p. 108), then the cases with at most 2 distant
problems and no close ones in the semi-distant lemma (Lemma 4.6.2, p. 117), and finally
the cases with at most 2 distant problems and some close problems in the close lemma
(Lemma 4.7.2, p. 127).

The following claim is a corollary of the properties of almost 4-connectivity, and is
useful in various proofs of this chapter.

Claim 4.0.2. Let G be a planar graph that is almost 4-connected w.r.t. a 4-family U .
Then G does not have a special vertex u ∈ U that forms a K4 with three of its neighbors.

Proof. Let v1, v2, v3 ∈ N(u), such that {u, v1, v2, v3} form an induced K4 in G. Since
d(u) = 5, u has a neighbor v4 distinct from v1, v2, v3. W.l.o.g., v4 belongs to the face de-
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limited by {u, v1, v2}. Then {u, v1, v2} is a 3-cut that separates v3 from v4, a contradiction
to the definition of almost 4-connectivity.

4.1 K4, C4+-subdivisions
In Chapter 3, the composite rules that we considered were associated with a path between
the two special vertices. In order to apply a similar method to the (CII) configurations
made up of 4 special vertices, we consider more complex structures: K4-subdivisions and
C4+-subdivisions (defined in the preliminaries chapter).

u1 u2

u3

u4

S

S
S

S
S

S

(a) K4

u1

u2

u3

u4

S

S

S

S

S S

(b) C4+

Figure 4.3: The two subdivisions considered in the proof of Lemma 4.1.2: K4-subdivision
and C4+-subdivision

The general idea is to color the edges of the subdivision with 2 new “extra” colors such
that each special vertex is the endpoint of one path. We can then proceed as in the case
of the configuration (CI) to color the neighborhood of the special vertices. However, not
only are the remaining neighbors of the special vertices still not necessarily disjoint, but
they can now be touched by paths of the subdivision, which forces us to consider a large
number of subcases.

A result by Yu [82] gives us a K4-subdivision (see Figure 4.3a) under the condition of
almost 4-connectivity, with two exceptions. We show in Lemma 4.1.2 below that we are
able to extract from these two exceptions a C4+-subdivision (see Figure 4.3b) with some
additional properties, which we call C∗4+-subdivision.

In a subdivision S rooted on a 4-family U , let us say that two special vertices ui, uj
are k-linked, k ∈ {0, 1, 2}, if there are k (ui, uj)-paths in S with no special vertex as an
internal vertex. In a K4-subdivision, all special vertices ui, uj are pairwise 1-linked, while
in a C4+-subdivision there are two pairs of 0-linked, two pairs of 1-linked, and two pairs of
2-linked special vertices. Note that it is sufficient to specify one pair of 1-linked and one
pair of 2-linked special vertices to deduce the link of all pairs. If ui, uj are 1-linked, we
call the (ui, uj)-path a solo path of S. If ui, uj are 2-linked, we call the two (ui, uj)-paths
parallel paths of S.

Just like in the previous chapter, if ui ∈ U is a special vertex and v one of its neighbors,
we say that v is a remaining neighbor of ui if the edge uiv does not belong to S.
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Definition 4.1.1 (C∗4+-subdivision). Let G be a planar graph with a C4+-subdivision S
rooted on a 4-family U . S is a C∗4+ if its satisfies the following three conditions:
• Property “0-linked”: Two 0-linked special vertices have no common remaining neigh-
bor;
• Property “1-linked”: No internal vertex of a solo (ui, uj)-path of S is a remaining
neighbor of some uk ∈ U \ {ui, uj};
• Property “2-linked”: If ui, uj ∈ U are 2-linked, then ui, uj have at most one common
remaining neighbor, and it belongs to a parallel path of S that is not incident with
ui, uj.

We say that S is a K-subdivision if it is a K4-subdivision or a C∗4+-subdivision. In the
next lemma, we show how we find such a subdivision in a planar graph G with a (CII)
configuration U . In order to reduce the number of cases in the rest of the proof, we want
to guarantee the additional property of chordlessness of the subdivision (as defined in the
Preliminaries chapter).

Lemma 4.1.2. Let H be a planar graph that is almost 4-connected w.r.t. a 4-family
U = {u1, u2, u3, u4}. Then H contains a chordless K-subdivision rooted on U .

In order to prove this lemma, we use a result by Yu [82], which deals with graphs with
two types of structure constraints. Let us introduce them, as N1-graphs and N2-graphs.
The following definitions are taken straight from the beginning of Section 4 of [82], as the
two obstructions, pictured in Figure 7 of [82] on page 36.

An N1-graph (Figure 4.4) is a planar graph H that has a 4-family U = {u1, u2, u3, u4}
and a facial cycle C (that we assume is the outer cycle), such that for each i ∈ {1, 2, 3, 4}
either ui ∈ C or H has a 4-cut Xi separating ui from U \ {ui} (so uj /∈ Xj for j 6= i),
and |Xi ∩ C| = 2. Moreover, if Hi is the component of H \ Xi containing ui, then the
components Hi for i ∈ {1, . . . , 4} are disjoint.

u1
u2

u3

u4

u1
u2

u3

u4

Figure 4.4: An N1-graph, with u2, u4 on the outer cycle, and u1, u3 surrounded by 4-cuts

An N2-graph (Figure 4.5) is a planar graph H with a 4-family U = {u1, u2, u3, u4} and
distinct (but not necessarily disjoint) 4-cuts Ti, i ∈ {1, . . . ,m}. The 4-cuts are such that
each Ti separates two vertices of U , say {u1, u2}, from Ti+1− Ti 6= ∅; T1 = {a1, a2, a3, a4},
Tm = {b1, b2, b3, b4} and H contains 4 disjoint paths Si from ai to bi for i ∈ {1, . . . , 4}
respectively. Additionally, H has no 4-cut T separating Ti \ T 6= ∅ from Ti+1 \ T 6= ∅, or
separating {u1, u2} from T1 \ T 6= ∅, or separating {u3, u4} from Tm \ T 6= ∅; and either
Ti ∩ Ti+1 6= ∅ or two vertices of Ti and two vertices of Ti+1 are cofacial in H. Finally,
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the ten following paths exist and are internally disjoint: a (u1, u2)-path P12, a (u1, a1)-
path Q1, a (u1, a2)-path Q2, a (u2, a3)-path Q3, a (u2, a4)-path Q4, a (u3, u4)-path P34, a
(u3, b1)-path Q′1, a (u3, b2)-path Q′2, a (u4, b3)-path Q′3, and a (u4, b4)-path Q′4. This last
property is not part of the exact definition from [82], but deduced from the first remark
in Section 3 on page 20 of [82].

u1

u2

u3

u4

a1 . . .

a2 . . .

a3 . . .

a4 . . .

t1

t2

t3

t4

. . . b1

. . . b2

. . . b3

. . . b4

u1

u2

u3

u4

Figure 4.5: An N2-graph, with three 4-cuts represented: {a1, a2, a3, a4}, {t1, t2, t3, t4},
{b1, b2, b3, b4}

Let us restate Theorem 4.2 from [82] in the new formalism. The definitions in Yu’s
paper have stronger constaints and the theorem is an equivalence, but in the present paper
we only need one implication. Our definitions of N1-graph and N2-graph are slightly
simplified and the theorem is restated as an implication.

Theorem 4.1.3 (Theorem 4.2 of [82]). Let G be a 3-connected planar graph and U =
{u1, u2, u3, u4} ⊆ V (G) be such that G has no 3-cut separating two vertices in U . Then
G has a K4-subdivision rooted on U , or G is an N1-graph or an N2-graph.

We argue that Theorem 4.1.3 does not in fact require the 3-connectivity assumption.

Theorem 4.1.4. Let G be a planar graph and U = {u1, u2, u3, u4} ⊆ V (G) be such that
G has no 3-cut separating two vertices in U . Then G has a K4-subdivision rooted on U ,
or G is an N1-graph or an N2-graph.

Proof of Theorem 4.1.4. We proceed by induction on the size of G. Assume that G is
not 3-connected. Then there is a cut X of size at most 2. We may assume that X is a
minimal cut. We consider the connected components C1, . . . , Cp of G \ X, and observe
that all special vertices in U belong to the same one, say C1. If |X| = 1, we consider
G′ = G \ {C2 ∪ . . . ∪Cp}. If |X| = 2, we consider G′ = G \ {C2 ∪ . . . ∪Cp}+ xy, where x
and y are the two vertices in X. If xy ∈ E(G) then adding the edge xy does not create a
double edge.

In both cases, G′ has fewer vertices than G, and is almost 4-connected with respect
to U . By Theorem 4.1.3, G′ has a K4-subdivision rooted on U , or G is an N1-graph or an
N2-graph. Note that each of those three properties extend to all of G (up to modifying
the embedding, in the case of an N1-graph with |X| = 1 so as to maintain that the cycle
is facial).
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We can now tackle the proof of Lemma 4.1.2 (p. 77).

Proof of Lemma 4.1.2. First, let us define the operation that turns a subdivision into
a chordless one. Given a K4- or C4+-subdivision S rooted on a 4-family U , we say
that we eliminate the chords of S if we apply the following operation exhaustively:
if a path P = (v1, . . . , vk) of S has a chord vivj, we replace P in S with the path
P ′ = (v1, . . . , vi, vj, . . . , vk), except if vi, vj ∈ U and the edge vivj already constitutes
a path of S. Since each elimination decreases the number of edges in S, the process ter-
minates, and the obtained subdivision S ′ is well-defined and chordless. Since the vertices
of S ′ are a subset of the vertices of S and the ends of the paths are preserved, S ′ has the
same type (K4 or C4+) as S.

If G has a K4-subdivision, eliminating its chords gives us the result. Using Theo-
rem 4.1.4 (p. 78), it now suffices to show that any N1-graph and any N2-graph contain a
chordless C∗4+-subdivision to prove our lemma.

Let us first take care of the case where H is an N2-graph, defined as in the definition
above. Let S be the union of the paths P12, Q1, Q2, Q3, Q4, P34, Q′1, Q′2, Q′3, Q′4, S1,
S2, S3, S4. S is a C4+-subdivision rooted on U , so let S ′ be a chordless C4+-subdivision
obtained by eliminating the chords of S. Let us prove that S ′ is a C∗4+-subdivision.

By definition, the 4-cut T1 is a subset of V (S), and we show that T1 ⊆ V (S ′). Let
us assume for contradiction that there is a vertex t ∈ T1 which belongs to a path P of S
on which a chord elimination was performed: there are two vertices v, v′ on P , such that
the edge vv′ ∈ E(H) is not in P and t is on the (v, v′)-section P ′ of P . But then the
path (P \P ′)∪ {vv′} is a path between two 1-linked special vertices in H \ T1, which is a
contradiction; so T1 ⊆ V (S ′).

Assume for contradiction that two 0-linked special vertices ui, uj have a common re-
maining neighbor v w.r.t. S ′. If v belongs to V (S ′), then the edge uiv or ujv forms a
chord of S ′ since all paths of S ′ are incident with ui or uj. It is a contradiction, so v does
not belong to V (S ′). However, since ui and uj are 0-linked, they are separated by the
4-cut T1, and so v is a vertex of T1, hence in S. This is a contradiction, which gives us
the property “0-linked” of S ′.

To obtain property “1-linked”, observe that no internal vertex of a solo (ui, uj)-path
is a remaining neighbor of a uk ∈ U \ {ui, uj}, since this would create a path between
0-linked special vertices that would be disjoint from the 4-cut T1, a contradiction.

Let us now prove the property “2-linked”. By definition of the cut T1, the common
remaining neighbors of two 2-linked special vertices ui, uj belong to parallel paths of S ′.
If a common remaining neighbor v of ui, uj belongs to a (ui, uj)-path of S ′, the two edges
uiv, ujv form chords in S ′, a contradiction, so the common remaining neighbors of ui, uj
belong to parallel (uk, ul)-paths that are not incident with ui, uj. If u1, u3 (2-linked) have
two common remaining neighbors v, v′, they belong to different parallel (u2, u4)-paths by
planarity (otherwise {u1, u4, v} and {u2, u3, v′} form a K3,3-minor in H if v, v′ belong to
a path P = (u2, . . . , v, . . . , v

′, . . . , u4)). Then we claim that {u1, v, v′} is a 3-cut of H that
separates u2 from u3. If not, there is a (u2, u3)-path P23 in H that is vertex-disjoint from
u1, v, v

′, and by definition of T1, P23 contains a vertex t ∈ T1 that is on a (u1, u3)-path of
S ′, and the (u2, t)-section of P23 does not contain u4. Then {u1, u2, v, t, u4 = v′} induce
a K5-minor in H by contracting the (u4, v

′)-path of S ′ into a vertex. Hence {u1, v, v′}
is a 3-cut of H that separates u2 from u3, which is a contradiction with the almost 4-
connectivity of H w.r.t. U . Property “2-linked” follows.

79



Now let us consider the case where H is an N1-graph with outer cycle C. We build a
C4+-subdivision S rooted on U as follows. First, for each ui /∈ C, we find four internally-
disjoint paths pi1, pi2, pi3, pi4 from ui to the four vertices of its associated 4-cutXi. Such paths
exist since there is no 3-cut separating ui from U \ {ui} in H. We assume pi1 and pi2 each
have an end on the outer cycle C. We add (E(C) \

⋃
ui /∈C E(Hi))∪

⋃
ui /∈C(E(pi1)∪E(pi2))

to S, where Hi is the component of H \ Xi containing ui. To obtain the two remaining
paths of S, we consider the graph H ′ formed by removing (V (C) ∪

⋃
ui /∈C V (Hi)) \ U

from H, and add back pi3 and pi4 to H ′. We look at the outer face of H ′. Let P13 be the
outer (u1, u3)-path and P24 the outer (u2, u4)-path of H ′. We claim that these paths are
vertex-disjoint. To see it, observe that in H there are at least 4 internally-disjoint paths
from u1 to u3. At least two of them are disjoint from C, hence belong to H ′. Therefore,
H ′ cannot contain a 1-cut separating {u1, u2} from {u3, u4}. Therefore, let us add P13

and P24 to S to form our C4+-subdivision S.
Let S ′ be a chordless C4+-subdivision obtained by eliminating the chords of S. Let us

now prove that S ′ is a C∗4+-subdivision.
We first check property “1-linked”. Let ui, uj be 1-linked special vertices with a path

Pij of S ′, and uk ∈ U \ {ui, uj}. If there is an internal vertex v of Pij that is a remaining
neighbor of uk, then {uk, v} is a 2-cut of H if uk is on C, otherwise there is a vertex x in
the 4-cut Xk of uk such that {x, v} is a 2-cut of H, contradicting its 3-connectivity.

To check properties “0-linked” and “2-linked”, we show that there is no remaining
neighbor in common between u1 and {u3, u4} (respectively 2-linked and 0-linked to u1),
because of the properties of almost 4-connectivity of H. Each special vertex ui either
belongs to C or there is a 4-cut Xi = {x1, x2, x3, x4} separating H into a component Hi

containing ui and a H \ (Xi ∪Hi) containing U \ {ui}. If u1, uk, k ∈ {3, 4}, belong to C
and share a remaining neighbor v, then {u1, uk, v} is a 3-cut that separates two neighbors
of u1 (if k = 3) or separates u2 from u3 (if k = 4). If u1 belongs to C and uk has a
4-cut Xk, then their common remaining neighbor is the only vertex x ∈ Xk that does not
belong to S ′. Then there is a vertex x′ ∈ Xk ∩ C, such that {u1, x, x′} is a 3-cut that
separates u2 from u3 (whether k = 3 or 4). If both u1, uk have 4-cuts X1, Xk, then their
common remaining neighbor is again the only x ∈ X1 ∩ Xk that does not belong to S ′,
and there are x′1 ∈ X1 ∩C and x′k ∈ Xk ∩C such that {x′1, x′k, x} is a 3-cut that separates
u2 from u3. In all cases, we obtain a contradiction with the almost 4-connectivity of H.
Properties “0-linked” and “2-linked” follow, which completes the proof.

4.2 Patterns
Although almost all the subdivisions that we consider throughout the paper are regular
K4-subdivision or C4+-subdivisions, we occasionally consider a more convenient structure,
which we call semi-C4+-subdivision, that consists in a C4+-subdivision where two parallel
paths with disjoint ends intersect on one vertex.

LetW4 be the wheel graph on 5 vertices u1, u2, u3, u4, w, i.e. the graph where u1, u2, u3, u4
form a cycle and w is adjacent to the other four vertices.

Definition 4.2.1 (Semi-C4+-subdivision). A semi-C4+-subdivision rooted on a 4-family
U in a graph G is a W4-subdivision rooted on U ∪ {w}, where w is a vertex of G.

By abuse of notation and by analogy with the C4+-subdivision, we arbitrarily pick two
pairs of special vertices (ui, uj), (uk, ul) and we view the union of the (ui, w)-path and the
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(uj, w)-path as a (ui, uj)-path Pij, and the union of the (uk, w)-path and the (ul, w)-path
as a (uk, ul)-path Pkl. We say that there is a contact between Pij and Pkl.

Observe that a semi-C4+-subdivision is always 2-colorable, since we can simply swap
the colors of two parallel paths in a 2-coloring, in order to give different colors to the two
paths in contact (see Figure 4.6).

w

u1

u2

u3

u4

P1

P2 P2

P2

P1 P2

P1 P1

Figure 4.6: A 2-colored semi-C4+-subdivision

The following definition regroups the different kinds of structures that we consider for
our reduction rules.

Definition 4.2.2 (Semi-subdivision). A semi-subdivision S in a graph G is aK4-subdivision,
a C4+-subdivision or a semi-C4+-subdivision rooted on a 4-family U .

Our overall goal is to find an invidual reduction rule for each of the four special vertices,
and combine them into a general rule for the whole configuration. We define these rules
by extending the formalism of Chapter 3.

A subdivision partial configuration (or pattern) Ci is a configuration defined over the
neighborhood of one special vertex uj or two special vertices uj, ul, with three identified
incident edges per special vertex, called subdivision edges. We denote it by Ci(uj) if it
involves one special vertex, and Ci(uj, uk) otherwise.

Observe that an elementary partial configuration can be turned into a subdivision
partial configuration by adding two subdivision edges. The subdivision partial configura-
tion (CU) defined below is an example of partial configuration that involves two special
vertices.

We say that a set of patterns M = {C1, . . . , Ck}, k ∈ {2, 3, 4}, is a mapping of a
4-family U , w.r.t. a semi-subdivision S rooted on U , if in this semi-subdivision there is
a bijection between the special vertices of C1, . . . , Ck and the special vertices of U ; i.e.
each special vertex u of C1, . . . , Ck can be associated with a special vertex u′ ∈ U , and the
neighborhoods of u and u′ are isomorphic. If u′ ∈ U is associated to the special vertex u
of a pattern Ci, we say that u′ forms a pattern Ci w.r.t. S.

Given a mappingM = {C1, . . . , Ck} and Ci ∈M, we denote by V (Ci) the set containing
the special vertices associated with Ci inM and their remaining neighbors. We say that
a pattern Ci touches another pattern Cj if V (Ci) ∩ V (Cj) 6= ∅. We say that Ci touches S
if at least one non-special vertex of V (Ci) belongs to a path of S.

A subdivision composite configuration (M, S) is the following configuration: the graph
contains a 4-family U and a semi-subdivision S rooted on U , whileM is a mapping of U
w.r.t. S.

In the previous chapter, we defined elementary partial rules over elementary partial
configurations. This definition can be directly extended to define subdivision partial rules
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over subdivision partial configurations, i.e. as a rule Ri = (Ci, f r
i , f

c
i ) associated with a

pattern Ci, a partial reduction function encoded by a set Oi ⊆ {add, remove}×E(Ci) and
the partial recoloring function f c

i .
LetM = {C1, . . . , Ck}, k ∈ {2, 3, 4}, be a mapping of a 4-family U = {u1, u2, u3, u4},

w.r.t. a semi-subdivision S rooted on U . For each i ∈ {1, . . . , k}, let Ri = (Ci, f r
i , f

c
i )

be a subdivision partial rule associated with the pattern Ci. Let cS be a 2-coloring of S.
The subdivision composite rule Rc = (Cc, f

r
c , f

c
c ), denoted by ({R1, . . . ,Rk}, S, cS), is the

reduction rule associated with the subdivision composite configuration Cc = (M, S) and
is defined as follows. The reduction function f r

c is defined by f r
c (G) = (f r

1 ◦ · · · ◦ f r
k (G)) \

(U ∪ E(S)), i.e. the successive application of the operations in Oi in reverse order and
the removal of the special vertices U and the edges of the semi-subdivision S, to form the
reduced graph G′.

In order to provide a semantics of f c
c , we define the intermediate graphs Gi

int = f r
i+1 ◦

· · · ◦ f r
k (G), for 0 ≤ i ≤ k. We use these graphs to define a sequence of colorings ciint that

lead to a coloring c of G. Let pc be a coloring of G′. Let c0int = pc ∪ cS be a coloring
of G0

int = G′ ∪ (U ∪ E(S)). We define ciint = f c
i (Gi

int, c
i−1
int ) for i ∈ {1, . . . , k}. We finally

define f c
c (G, pc, cS) = ckint for any planar graph G, coloring pc of f r

c (G) and good coloring
cS of S. In other words, the semi-subdivision S is added to G′ and colored with cS, then
for each pattern Ci considered in ascending order, the reduction of Ci is undone and the
edges in the neighborhood of Ci are colored according to the partial recoloring function
f c
i . This definition is motivated by the fact that whenever pc is a good coloring of the
reduced graph G′, and the partial rules Ri are valid and do not interfere with each other,
each intermediate coloring ciint is a good coloring of the intermediate graph Gi

int, which
allows to build step by step a good coloring of G. The 2-coloring cS of S is specified only
when necessary.

In the figures, the two paths P1, P2 induced by the 2-coloring of S are represented in
red and blue. The purple color is used to color the whole subdivision when its 2-coloring
is not specified. An edge represented in black does not belong to the subdivision. A red
vertex ( ) (resp. blue ) represents a vertex that may be touched by a red (resp. blue)
subdivision path. A purple vertex ( ) may be touched by either a red or a blue subdivision

path. When a path of the subdivision ends on a special vertex, it is represented by
P2

P2

P1

,
P1

P1

P2

or
S
S

S , respectively if it is the red path, the blue path, or if the color is not specified.
Let us now introduce the patterns we use in the rest of the proof. For each pattern,

we describe the associated partial configuration, as well as the conditions on the colors
of a 2-coloring of the associated subdivision S. We then provide a definition of the
partial reduction and recoloring functions. The patterns (CV ), (CNe), (CNo) are taken
from Chapter 3 and their definitions are omitted.
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List of the patterns:

The following patterns involve one special vertex.

v1

v2
u1

S
S

S

(CV )

 

v1

v2

Q  
u1

v1

v2

S
S

SQ

Q

• (CV ): Identical to the elementary partial configuration (CV ) from Chapter 3.

v1

v2
u1

S
S

S
P

(C ′V )

 

v1

v2

Q  
u1

v1

v2

S
S

SQ

Q
P

• (C ′V ): The special vertex u1 has two adjacent remaining neighbors v1, v2, and the
edge v1v2 belongs to S.
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1. The color of v1v2 in the
recoloring of G is given by the subdivision.

v2

v1

u1 P2

P2

P1

(CNe)

 

v2

v1
Q

 
u1

v2

v1

P2

P2

P1

Q
Q

P1

• (CNe): Identical to the elementary partial configuration (CNe) from Chapter 3.
Color requirements: If the remaining neighbor v1 is even, then the other remaining
neighbor v2 of u1 cannot touch the color of S that ends on u1.

v2

v1

u1 P2

P2

P1

(CNo)

 

v2

v1
Q

 
u1

v2

v1

P2

P2

P1P1

Q
Q

P1

• (CNo): Identical to the elementary partial configuration (CNo) from Chapter 3.
Color requirements: None of the remaining neighbors v1, v2 of u1 can touch the
color of S that ends on u1.

The following patterns involve two special vertices.

83



v2v1

u1 u2
S SS S SS

(CU)

 

v2v1
Q

 u1 u2

v2v1

S SS S SS

Q

Q

Q

• (CU): The two special vertices u1, u2 are adjacent but the edge u1u2 does not belong
to S. Let v1 (resp. v2) be the remaining neighbor of u1 (resp. u2) distinct from u2
(resp u1). The vertices v1, v2 are distinct, non-adjacent and disjoint from U .
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on u1, u2.

v1

v2

v

u1

u2

S
S

S
S

S

(CDa)

 
v1

v2

v Q

 

u1

u2

v1

v2

v

S
S

S
S

Q

Q

Q
S

S
S

S

• (CDa): The two special vertices u1, u2 are adjacent and the edge u1, u2 belongs to S.
The special vertices u1, u2 have precisely one common remaining neighbor v, and
u1, u2 have v1, v2 respectively as their other remaining neighbor. The vertices v1, v2
are adjacent and both are adjacent to v. The vertices v, v1, v2 are disjoint from S.
Reduction: In the reduced graph, we remove the edge v1v2.
Recoloring: In G, we deviate the color of vv1 on the edges vu2, u2u1 and u1v1. We
redirect the path u1 ∼ u2 of S through the edges u1v, vv1, v1v2 and v2u2.

v1

v2

v

u1

u2

S
S

S
S

S

(CDb)

 
v1

v2

v
Q  

u1

u2

v1

v2

v

S
S

S
S

S

Q

Q
S

Q

• (CDb): The two special vertices u1, u2 are adjacent and the edge u1, u2 belongs to S.
The special vertices u1, u2 have precisely one common remaining neighbor v, and
u1, u2 have v1, v2 respectively as their other remaining neighbor. The vertices v1, v2
are not adjacent and both are adjacent to v. The vertex v does not belong to S.
Reduction: In the reduced graph, we add the edge v1v2.
Recoloring: In G, we deviate the color of v1v2 on the edges v1u1, u1u2 and u2v2.
We redirect the path u1 ∼ u2 of S to make it go through the edges u1v and vu2.
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v1 v2v

u1

u2

P2P2
P1

SS S

(CT1a)

 
v1 v2v

T R  
u1

u2
v1 v2v

P2P2
P1

SS S

Q

Q

R R

P1

P1

• (CT1a): The two special vertices u1, u2 have precisely one remaining neighbor v in
common. We denote v1, v2 the other remaining neighbor of u1, u2 respectively. Both
v1 and v2 are adjacent to v. The vertices v, v1, v2 are disjoint from U . The vertex
v1 has an even degree.
Color requirements: The vertices v, v2 cannot touch the color of S that ends on
u1.
Reduction: In the reduced graph, v1 has an odd degree: let Q be a path of the
coloring of G′ that ends on v1.
Recoloring: In G, we deviate the color of vv2 on u2, we extend the path Q on the
edge v1u1, and we extend the extra color that ends on u1 on the edges u1v and vv2.

v1 v2v

u1

u2

P2P2
P1

P1 P1P2

(CT1b)

 
v1 v2v

Q R  
u1

u2
v1 v2v

P2P2
P1

P1 P1P2

R

R

Q

Q P1

P1

P2

P2

• (CT1b): The two special vertices u1, u2 have precisely one remaining neighbor v in
common. We denote v1, v2 the other remaining neighbor of u1, u2 respectively. Both
v1 and v2 are adjacent to v. The vertices v, v1, v2 are disjoint from U . The vertices
v1, v2 both have an odd degree in G.
Color requirements: The colors ending on u1, u2 in a 2-coloring of S must be
different. The vertex v1 (resp. v2) cannot touch the color that ends on u1 (resp.
u2).
Reduction: In the reduced graph, we remove the edges vv1 and vv2. The vertices
v1, v2 keep an odd degree in G′: let Q,R be paths of the coloring of G′ that end on
v1, v2 respectively.
Recoloring: In G, we extend the paths Q,R on the edges v1u1 and v2, u2 respec-
tively. We extend the extra color ending on u1 on the edges u1v and vv1, and we
extend the extra color ending on u2 on the edges u2v and vv2.
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v v′

u1

u2

P2P2
P1

SS S

(CT2Aa)

 
v v′

Q R  
u1

u2

P2P2
P1

SS S

v v′
Q

Q

R R

P1

P1

• (CT2Aa): The two special vertices u1, u2 have both their remaining neighbors v, v′ in
common, which are adjacent and disjoint from U . The vertex v has an odd degree
in G.
Color requirements: There is a color of S ending on u1 or u2 (let us say u1) that
does not touch v nor v′.
Reduction: In the reduced graph, v keeps an odd degree: let Q be a path of the
coloring of G′ that ends on v.
Recoloring: In G, we extend the path Q on the edge vu1, we deviate the color of
vv′ on u2, and we extend the extra color ending on u1 on the edges u1v′ and v′v.

v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2Ab)

 
v v′

Q R  
u1

u2

P2P2
P1

P1 P1P2

v v′
Q

Q

P2 R

R

P1

P1

• (CT2Ab): The two special vertices u1, u2 have both their remaining neighbors v, v′
in common, which are adjacent and disjoint from U . Both v and v′ have an even
degree in G.
Color requirements: The colors of S that end on u1 and u2 must be different. At
least one of v, v′ (let us say v′) does not touch at least one of the two colors of S
(let us say the one ending on u1).
Reduction: In the reduced graph, we remove the edge vv′. The vertices v, v′ have
an odd degree in G′: let T,R be paths of the coloring of G′ that end on v, v′

respectively.
Recoloring: In G, we extend the paths T,R on the edges vu1 and v′u2 respectively.
We extend the extra color ending on u1 on the edges u1v′ and v′v, and we extend
the extra color ending on u2 on the edge u2v.
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v v′

u1

u2

P2P2
P1

SS S

(CT2NAa)

 
v v′

Q R  
u1

u2

v v′

P2P2
P1

SS S

Q

Q

R R

P1

• (CT2NAa): The two special vertices u1, u2 have both their remaining neighbors v, v′
in common, which are not adjacent and are disjoint from U . The vertex v has an
even degree in the G.
Color requirements: One of v, v′ (let us say v′) does not touch a color of S that
ends on u1 or u2 (let us say u1).
Reduction: In the reduced graph, we add the edge vv′. The vertex v has an odd
degree in G′: let Q be a path of the coloring of G′ that ends on v.
Recoloring: In G, we extend the path Q on the edge vu1, we deviate the color of
vv′ on u2, and we extend the extra color ending on u1 on the edge u1v′.

v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2NAb)

 
v v′

Q R  
u1

u2

P2P2
P1

P1 P1P2

v v′
Q

Q

P2 R

R

P1

• (CT2NAb): The two special vertices u1, u2 have both their remaining neighbors v, v′
in common, which are not adjacent and are disjoint from U . Both v and v′ have an
odd degree in G.
Color requirements: One of v, v′ (let us say v′) does not touch the color ending
on u1, the other (v) does not touch the one ending on u2.
Reduction: In the reduced graph, v, v′ keep an odd degree: let T,R be paths of
the coloring of G′ that end on v, v′ respectively.
Recoloring: In G, we extend the paths T,R on the edges vu1 and v′u2 respectively.
We extend the extra colors ending on u1, u2 on the edges u1v′ and u2v respectively.

For convenience, we define some aliases which group several patterns together.
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v1

v2
u1

S
S

S

(CN)

:= {
v1

v2
u1

S
S

S

(CV )

|
v2

v1

u1 P2

P2

P1

(CNe)

|
v2

v1

u1 P2

P2

P1

(CNo)

}

• (CN): The special vertex u1 has 2 remaining neighbors v1, v2. If v1, v2 are non-
adjacent, this is configuration (CV ). Otherwise, if one of v1, v2 has an even degree
in G, this is configuration (CNe), and if both have an odd degree in G, this is
configuration (CNo).

v1 v2v

u1

u2

P2P2
P1

P1 P1P2

(CT1)

:= { v1 v2v

u1

u2

P2P2
P1

SS S

(CT1a)

| v1 v2v

u1

u2

P2P2
P1

P1 P1P2

(CT1b)

}

• (CT1): The two special vertices u1, u2 have one remaining neighbor v in common.
We denote v1, v2 the other remaining neighbor of u1, u2 respectively. Both v1 and
v2 are adjacent to v. The vertices v, v1, v2 are disjoint from U .

v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2A)

:= { v v′

u1

u2

P2P2
P1

SS S

(CT2Aa)

| v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2Ab)

}

• (CT2A): The two special vertices u1, u2 have both their remaining neighbors v, v′ in
common, which are adjacent and disjoint from U .

v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2NA)

:= { v v′

u1

u2

P2P2
P1

SS S

(CT2NAa)

| v v′

u1

u2

P2P2
P1

P1 P1P2

(CT2NAb)

}
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• (CT2NA): The two special vertices u1, u2 have both their remaining neighbors v, v′
in common, which are not adjacent and are disjoint from U .

From now on, when we talk about patterns, we refer exclusively to patterns from this
list.

Obviously the partial rules associated with the patterns of the considered mapping
may conflict with each other. We now address the conditions of compatibility between
patterns.

Definition 4.2.3 (Compatible patterns). Let G be a planar graph with a semi-subdivision
S rooted on a a 4-family U .

Let Ci, Cj be two patterns on U w.r.t. S. Ci, Cj are compatible if:
• Ci or Cj is a CV , C ′V or CU , and |V (Ci) ∩ V (Cj)| ≤ 1; or
• Ci, Cj are among CN , CT1, CT2A, CT2NA, CDa, CDb, and V (Ci) ∩ V (Cj) = ∅.
LetM = {C1, . . . , Ck} be a mapping of U w.r.t. a semi-subdivision S, and 2 ≤ k ≤ 4.

We say thatM is a compatible mapping w.r.t. S if it satisfies the following conditions:
• The Ci patterns inM are pairwise compatible;
• There exists a 2-coloring cS of S that fits the color requirements in the definition of
each Ci ∈M.

We justify this notion of compatible patterns and compatible mapping with the fol-
lowing claim.

Claim 4.2.4. Let G be a planar graph with a (CII) configuration w.r.t. a 4-family U . Let
M = {C1, . . . , Ck} be a mapping of U w.r.t. a semi-subdivision S, with 2 ≤ k ≤ 4, and let
Ri be a subdivision partial rule associated with Ci for i ∈ {1, . . . , k}.

IfM is a compatible mapping w.r.t. S, then the 2-coloring cS of S associated withM
is such that the subdivision composite rule ({R1, . . . ,Rk}, S, cS) associated with (M, S) is
valid.

Proof. Each pattern Ci ∈ {CV , C ′V , CU} has a deviated edge, v1v2 in the previous defini-
tions. Since Ci is compatible with all other patterns, it shares at most one vertex with
each of them, thus the edge v1v2 cannot be used as a deviated edge by another pattern.
Hence the resolution rules of the CV , C ′V , CU patterns can be applied independently.

A pattern Ci in {CN , CT1, CT2A, CT2NA, CDa, CDb} can only share at most one vertex
with each CV , C ′V or CU pattern, as they do not prevent the resolution rule of Ci from
being applied.

We emphasize that the parities involved in the resolution rules of CN , CT1, CT2A, CT2NA

are preserved no matter how many CV , C ′V or CU patterns touch them. Say we have a
pattern Ci in {CN , CT1, CT2A, CT2NA}, and a non-special vertex v of Ci. In the descriptions
of the patterns and their resolution rules, we may specify the parity of v in the graph G,
then which edges we add or remove to obtain that v has an odd degree in the reduced
graph G′. These definitions do not take into account the CV , C ′V , CU patterns or a path
from S that may touch v, but we argue that they do not interfere with the parity of v in
the reduced graph G′.

If a path from S touches v in G and does not form a C ′V pattern, then the reduction
from G to G′ removes two edges incident with v, which preserves the parity of v. If a
CV or CU pattern touches v in G, then one edge vu′ (u′ ∈ U) is removed and one edge
vv′ (v′ /∈ U) is added, which preserves the parity of v. Finally if a C ′V pattern {u′, v, v′}
touches v, then the edge vu′ is removed, as well as an edge vw from the path of S that
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contains the edge vv′. The edge vv′ is kept in the reduced graph. Thus, v has lost two
incident edges, and so its degree is preserved.

In conclusion, we may apply the resolution rules of compatible patterns in any order.
Since the definitions of patterns do not create cycles, do not use additional colors,

and since the 2-coloring cS of S fits the color requirements of all patterns in M, the
subdivision composite rule ({R1, . . . ,Rk}, S, cS) associated with (M, S) is valid.

Let us introduce the notion of settled special vertex, to characterize the special ver-
tices that are already compatible with the rest of the configuration and whose remaining
neighbors do not need to be further altered.

Definition 4.2.5 (Settled vertices). Let G be a planar graph with a (CII) configuration
w.r.t. a 4-family U . Let S be a semi-subdivision rooted on U .

We say that a special vertex u is lone-settled w.r.t. S if:
• u forms a CV or C ′V pattern and shares at most one remaining neighbor with each
of the other special vertices, and the two remaining neighbors of u are not the two
remaining neighbors of a CU pattern; or
• u forms a CN pattern and its remaining neighbors are disjoint from S and from the
remaining neighbors of other special vertices.

A special vertex is settled if it is lone-settled or forms a CT2NA pattern {u, u′, v, v′}
with another special vertex u′, such that v, v′ are disjoint from S and from the remaining
neighbors of other special vertices.

Note that in this definition, the CV pattern formed by a lone-settled special vertex can
touch the subdivision S. By Claim 4.2.4 (p. 89), we deduce immediately that if all four
vertices of U are settled w.r.t. S, there exists a mappingM of U compatible w.r.t. S.

v1

v

u1
S

S
S

S

S

v1 v2v

u1 u2
S

S
S S

S
S

v1

v2

u1

u2
u3

S
S

S

S
S

S

S
S

S

Figure 4.7: Examples of unsettled vertices

Figure 4.7 provides a few examples of unsettled special vertices: on the left a CN
pattern touching the subdivision, in the middle two CN patterns sharing a remaining
neighbor, and on the right a CU and a CV pattern sharing both remaining neighbors.
None of the depicted special vertices are settled.
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4.3 Redirection procedure
To further decrease the number of problematic cases to consider in the rest of the proof, we
consider a set of local transformations that, when applied exhaustively to a K-subdivision
S rooted on a 4-family U , return another K-subdivision S ′ rooted on U , of the same type
and which does not contain some inconvenient configurations. The special vertices of U
can be more easily mapped to patterns in S ′ than in S.

This procedure does not preserve the chordlessness of a subdivision it is applied to, so
let us consider the following weaker properties that are preserved by the procedure (as is
proven in Claim 4.3.2, p. 94).

Given a K-subdivision S rooted on U , an A-chord of S is a chord on a path of S
incident with a special vertex u ∈ U that is unsettled or forms a C ′V pattern w.r.t. S (see
Figure 4.8a); and a B-chord is a chord between two remaining neighbors of u ∈ U on a
path of S that is not incident with u (see Figure 4.8b). We say respectively that u has
an A-chord, a B-chord.

A K-subdivision satisfies property A (resp. property B) if it does not have an A-chord
(resp. a B-chord). A chordless K-subdivision obviously satisfies properties A and B.

u

u′

v1

v2

S

S

S

SS

(a) A-chord

u

u′ u′′

v1 v2

S
S

S

S SS

(b) B-chord

Figure 4.8: The configurations that are avoided by properties A and B

Let us now define the procedure that helps take care of problematic cases in a K-
subdivision.

Definition 4.3.1 (Redirection procedure). Let G be a planar graph with a (CII) config-
uration w.r.t. a 4-family U , and S be a K-subdivision rooted on U , such that S satisfies
properties A and B. The redirection procedure consists in applying as many times as
possible the redirection operations CX1, CX2, CX3 and CX4 to S.

Note that these configurations are defined on u1, u2 but may be in contact with un-
specified remaining neighbors of u3, u4, in which case we apply the redirections anyway.
The contacts with paths from S that would prevent us from applying the redirections are
specified.

Remark: the CV patterns on the drawings illustrating the redirections could turn out
to be CT2NA patterns, and are only featured as an indication.
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CV S

SCN

Redirection CX1, when w1 = w2

• CX1: The vertices u1, u2 are linked by a path u1 ∼ u2 of S of the form (u1, w1, Q, w2, u2),
with w1 = w2 if l(Q) = 0. The vertices u1, u2 have exactly one common remaining
neighbor v and have another remaining neighbor v1, v2 respectively, both adjacent
to v. The vertices v1 and w1 are non-adjacent. No path from S touches v, v1 or v2.
Redirection protocol: We replace the path u1 ∼ u2 in S with the path (u1, v, u2).

u1
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v
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u1
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v1
v2

v
w1/w2

S
S

S
S

CV
S

S

SCN

Redirection CX2, when w1 = w2

• CX2: The vertices u1, u2 are linked by a path u1 ∼ u2 of S of the form (u1, w1, Q, w2, u2),
with w1 = w2 if l(Q) = 0. The vertices u1, u2 have exactly one common remaining
neighbor v and have another remaining neighbor v1, v2 respectively, both adjacent
to v. The vertices v1 and w1 (resp. v2 and w2) are adjacent. No path from S touches
v, v1 or v2.
Redirection protocol: We replace the path u1 ∼ u2 in S with the path (u1, v1, v, u2).
The vertices v, w1 are the new remaining neighbors of u1 and are not adjacent, oth-
erwise {u1, v, v1, w1} would form a K4, contradicting Claim 4.0.2 (p. 75).
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Redirection CX3, when w1, v1 are not adjacent
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C ′V

Redirection CX3 when w1, v are not adjacent

• CX3: The vertices u1, u2 are linked by a path u1 ∼ u2 of S, they have exactly
one remaining neighbor v in common, and u1, u2 have another remaining neighbor
v1, v2 respectively. v1, v2 are both adjacent to v. There is another special vertex u3
such that there is a path u1 ∼ u3 in S of the form P = (u1, w1, Q, v2, Q

′, u3), with
l(Q) ≥ 0 (so w1 may be equal to v2) and l(Q′) ≥ 1. No path from S touches v nor
v1.
Redirection protocol: The vertex w1 cannot be adjacent to both v and v1, other-
wise {u1, v, v1, w1} would induce a K4 in the graph, a contradiction by Claim 4.0.2
(p. 75). We distinguish between two cases:
– If w1, v1 are not adjacent: we replace the path P in S with the path P ′ =

(u1, v, v2, Q
′, u3);

– If w1, v1 are adjacent: then necessarily w1, v are not, and in this case we
replace P in S with the path P ′ = (u1, v1, v, v2, Q

′, u3).
In both cases, the two new remaining neighbors of u1 are not adjacent.
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Redirection CX4

• CX4: The vertices u1, u2 are linked by a path u1 ∼ u2 of the form (u1, w1, Q, w2, u2),
with l(Q) ≥ 0 (with w1 = w2 if l(Q) = 0). The vertices u1, u2 have two adjacent
remaining neighbors v, v′ in common. No path from S touches v nor v′.
Redirection protocol: There must be a non-edge e among vw1, v

′w1, otherwise
{u1, v, v′, w1} form an induced K4, which contradicts the fact that G has a (CII)
configuration by Claim 4.0.2 (p. 75). Let us say that e = vw1. We replace the path
u1 ∼ u2 in S with the path (u1, v

′, u2).

In all cases, the special vertex u1 is given a new set of remaining neighbors that are
not adjacent. The procedure terminates, as each redirection requires two special vertices
that have adjacent remaining neighbors to be applied, and increases the number of special
vertices with non-adjacent remaining neighbors.

We define the associated property: a subdivision satisfies Property C if no redirection
can be applied. We say that a subdivision is strong if it satisfies properties A, B and C.

To justify the choice of this procedure and the notion of strong subdivision, we prove
that it preserves properties A and B and the structure of K-subdivision.

Claim 4.3.2. The redirection procedure preserves properties A and B.

Proof. Let G be a planar graph with a 4-family U and a K-subdivision S rooted on U ,
such that S satisfies properties A and B. Let S ′ be the subdivision obtained by applying
the redirection procedure to S. Let us prove that S ′ satisfies properties A and B as well.
• CX1, CX4: Redirection configurations CX1 and CX4 feature two special vertices u1, u2

and only modify one (u1, u2)-path in the subdivision, by replacing it with another of
length 2. No path of length 2 has a B-chord, and since an edge u1u2 ∈ E(G) already
constitutes a path of S, the new path does not have an A-chord either. Since the
paths of S are internally disjoint, the vertices w1, w2 do not belong to S ′ and thus
cannot be part of an A-chord or a B-chord.
• CX2: In redirection configuration CX2, the new (u1, u2)-path P ′ has length 3, hence

does not contain B-chords. Since the remaining neighbors of u1, u2 w.r.t. S ′ do not
belong to S ′ except one (v), the other paths of S ′ do not contain B-chords either.
The remaining neighbors of u2 are disjoint from P ′, hence u2 does not have an A-
chord, but u1 does however. We claim that property A is still satisfied because u1
is (lone-)settled w.r.t. S ′. The remaining neighbors of u1 are not adjacent, hence u1
is unsettled only if it forms a CT2NA pattern with u3 or u4 (this pattern would then
touch S ′), since u3, u4 do not form a CU pattern as S satisfies property A.
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Let us first consider the case where S is a K4-subdivision, and assume u3 has w1, v
as its remaining neighbors w.r.t. S ′ (it has the same remaining neighbors w.r.t. S,
since only the remaining neighbors of u1, u2 were modified). Then {u1, w1, v} and
{v1, u2 = u4, u3} induce a K3,3-minor of G (by contracting the path u2 ∼ u4 to a
vertex, see Figure 4.9), contradicting the planarity of G.

w1
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Figure 4.9: The K3,3-minor formed by {u1, w1, v} and {v1, u2 = u4, u3} if S is a K4-
subdivision (the path u2 ∼ u3 is not pictured)

Now let us take a look at the case where S is a C4+-subdivision and assume that
u3 or u4 has w1, v as its remaining neighbors w.r.t. S ′ (thus w.r.t. S). If u1, u2 are
1-linked, u3 or u4 has a remaining neighbor in the solo (u1, u2)-path P , contradicting
the property “1-linked” of S. If u1, u2 are 2-linked, then {u1, w1, v} and {v1, u2, u3}
induce a K3,3-minor (see Figure 4.10), again a contradiction. Thus, u1 cannot form
a CT2NA pattern, so forms a CV pattern and is lone-settled.
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Figure 4.10: TheK3,3-minor formed by {u1, w1, v} and {v1, u2, u3} if S is a C4+-subdivision

• CX3: The remaining neighbors v, v2 of u2 w.r.t. S ′ belong to the new (u1, u3)-path
P ′ of S ′ and the edge vv2 belongs to P ′, so u2 does not have an A-chord nor a
B-chord.
The remaining neighbors of u3, u4 are not modified by the redirection. The paths of
S incident with u4 are not modified, so u4 does not have an A-chord, and a B-chord
of u4 could only belong to the new path P ′ of S ′. An A-chord of u3 could only
belong to P ′, as its other incident paths of S were not modified, and u3 does not
have a B-chord, as its non-incident paths of S were not modified. We claim that
none of u3 and u4 have an A-chord or B-chord on P ′ in S ′ if they did not in S.
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We examine the case of u1 at the end of this proof. Let us make several observations
that will help us prove our claims.
Whether S is a K4- or a C4+-subdivision, it contains a (u1, u2)-path P12, a (u2, u4)-
path P24, a (u3, u4)-path P34, as well as the path P = P13, split into a (u1, v2)-section
Q13 and a (v2, u3)-section T13, all these paths having no special vertex as internal
vertex.

Observation 2. The special vertex u3 does not have v1 as a remaining neighbor
w.r.t. S.

Proof. If it were the case, then G would contain a K3,3-minor induced by {u1, u3, v}
and {u2, v1, v2}, obtained by contracting P12, P34, Q13 and T13 to one edge, and P24

to one vertex (see Figure 4.11). This would contradict the planarity of G.

v1

v2

v

u1

u2

u3

u4S

SS

S

S

Figure 4.11: The K3,3-minor formed by {u1, u3, v} and {u2, v1, v2} in Observation 2

Observation 3. The special vertex u3 does not have v as a remaining neighbor
w.r.t. S.

Proof. Because the paths P24 and P34 are disjoint from v, v1, v2, the vertices u1, u3
would then belong to two different regions of the plane delimited by the three
edges u2v, u2v2, vv2 (see Figure 4.12). This is a contradiction with the almost
4-connectivity of G.
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Figure 4.12: The planar embedding of the graph of Observation 3
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Observation 4. The special vertex u4 does not have two remaining neighbors (w.r.t.
S) v4 in T13, and v′4 ∈ {v, v1}.

Proof. If v′4 = v1, contracting the (v2, v4)-section of T13 gives us a K3,3-minor of G
induced by {u1, v, u4} and {u2, v1, v2}, a contradiction (see Figure 4.13a). If v′4 = v,
then by planarity u1, u4 must belong to two different regions of the plane delimited
by the three edges u2v, vv2 and u2v2 (see Figure 4.13b), again a contradiction to
the almost 4-connectivity of G.

v1

v2

v
v4

u1

u2

u3

u4S

SS

S

S

S

(a) The K3,3-minor formed by {u1, u4, v}
and {u2, v1, v2 = v4} in Observation 4
if v′4 = v1
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(b) The planar embedding of
the graph of Observation 4 if
v′4 = v

Figure 4.13: The K3,3-minor and the planar embedding of Observation 4

Observation 5. The special vertex u4 does not have w1, v as its remaining neighbors
w.r.t. S if w1, v are non-adjacent.

Proof. If it were the case, there would be a K3,3-minor in G induced by {u1, u4, v2}
and {u2, w1, v} (see Figure 4.14), a contradiction with the planarity of G (note that
by assumption w1, v are non-adjacent, hence w1 6= v2).
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Figure 4.14: The K3,3-minor formed by {u1, u4, v2} and {u2, w1, v} in Observation 5

Since only the (u1, u3)-path P changes into the path P ′, and the remaining neighbors
of u3, u4 are not changed by the redirection, u3 (resp. u4) may only have an A-chord
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(resp. B-chord) on the new path P ′. This (u1, u3)-path in incident with u3 so u3
does not have a B-chord on it, and no A-chord either by Observations 2 and 3. Note
that if u3 has an A-chord in S, then u3 forms a CV pattern w.r.t. S, and the same
pattern w.r.t. S ′.
P ′ is not incident with u4, so u4 does not have an A-chord on it, and Observation 4
tells us that it does not have a B-chord either.
As for u1, note that in the version with w1, v1 non-adjdacent, the new remaining
neighbors of u1 are disjoint from S, thus u1 forms a CV or CT2NA pattern disjoint
from S (since no pair of special vertices form a CU pattern by property A), hence
is settled. In the version with w1, v non-adjacent, the edge u1v is an A-chord of u1,
but Observations 3 and 5 tell us that neither u3 nor u4 can form a CT2NA pattern
with u1. Again, since no pair of special vertices form a CU pattern by property A of
S, u1 is left lone-settled by the redirection, and property A is satisfied by S ′.

Claim 4.3.3. Let G be a planar graph with a (CII) configuration w.r.t. a 4-family U .
Then G contains a strong K-subdivision rooted on U .

Proof. By Lemma 4.1.2 (p. 77), G contains a chordless K-subdivision S rooted on U . In
particular, S satisfies properties A and B. Since by Claim 4.3.2 (p. 94) the redirection
procedure preserves properties A and B, and since the type of subdivision (K4 or C4+) is
preserved by each redirection operation, then the result follows if S is a K4-subdivision.

Now assume that S is a C∗4+-subdivision. We prove that after application of any
redirection operation to S, the obtained subdivision S ′ is a C∗4+-subdivision, and the
result follows by induction. By Claim 4.3.2 (p. 94), S ′ satisfies properties A and B.
Observe that the redirection operations preserve the ends of the paths of S; in particular,
vertices that are k-linked stay k-linked after application of an operation. Observe that
in each redirection configuration, the two special vertices u1, u2 involved have a common
remaining neighbor that is disjoint from S. Therefore, by property “2-linked”, the two
special vertices u1, u2 involved in the configuration cannot be 2-linked: they are necessarily
1-linked.

Let us prove the three properties of C∗4+ of S ′ in order.
• Property “0-linked”: The only special vertices whose remaining neighbors are mod-

ified by a redirection operation are the special vertices u1 and u2 involved in the
redirection configuration. Therefore, if uj, uk are 0-linked special vertices, then their
remaining neighbors w.r.t. S ′ are the same as w.r.t. S, and property “0-linked” of
S ′ is implied by the same property of S.
• Property “1-linked”: Let ui, uj be 1-linked special vertices associated with a path
Pij of S, and uk ∈ U \ {ui, uj}. Assume for contradiction that uk has a remaining
neighbor vk w.r.t. S ′ that is an internal vertex of the (ui, uj)-path P ′ij of S ′. If vk
is not a remaining neighbor of uk w.r.t. S, then the operation applied to S involves
uk, and the edge ukvk belongs to S. However, we can check in all redirection
operations that when an edge uv incident with a special vertex u is removed from
the subdivision, then v does not belong to the subdivision after the operation is
applied. This is a contradiction with the definition of vk, therefore vk is indeed a
remaining neighbor of uk w.r.t. S. Thus, P ′ij 6= Pij.
Since uk is 0-linked with one of ui, uj, the vertex vk cannot be a remaining neighbor
of both w.r.t. S, by “0-linked” property of S. So the operation applied to S cannot
be CX1 or CX4, as their new path has length 2.
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The operation cannot be CX3 either, since in this case ui, uj must be the vertices
u1, u3 in the definition of this configuration (so that P ′ij is the new path); ui, uj are
1-linked, and the operation is applied on the vertices u1, u2, which are also 1-linked
as mentioned above. Thus, ui or uj is 1-linked to two different special vertices, a
contradiction.
If the operation is CX2, then vk cannot be the common remaining neighbor v of u1, u2
in the definition, since uk is 0-linked to one of them. If vk is the v1 of CX2, then
{uk, v, w1} and {u1, u2, v1} induce a K3,3-minor in G (by contracting the (w1, u2)-
section of u1 ∼ u2 to an edge, and contracting a (uk, u2)-path of S or a (uk, um)-path
and a (um, u2)-path of S to an edge, for um ∈ U \ {u1, u2, uk}), a contradiction to
the planarity of G.
• Property “2-linked”: Let ui, uj be two 2-linked special vertices. Since the operations

are applied on 1-linked special vertices, exactly one of these two special vertices, say
ui, is involved in the operation (as u1 or u2 in the definitions) applied to S. Let v be
a common remaining neighbor of ui, uj w.r.t. S ′. If v was not a common remaining
neighbor of ui, uj w.r.t. S, then it was a remaining neighbor of uj and not ui, as
uj is not involved in the operation: the edge uiv belongs to S, and more precisely
belongs to a solo (ui, uk)-path Pik of S between the two 1-linked special vertices ui
and uk ∈ U \ {ui, uj}. Thus, uj has a remaining neighbor (w.r.t. S) that is an
internal vertex of a solo path of S, a contradiction with the “1-linked” property of
S.
Therefore, the potential common remaining neighbors v, v′ of ui, uj w.r.t. S ′ are also
their common remaining neighbors w.r.t. S. So by property “2-linked” of S, ui, uj
have at most one remaining neighbor v, and it belongs to a parallel (uk, ul)-path
Pkl of S that is not incident with ui, uj. If the path Pkl was not modified by the
operation, the result follows. If Pkl was modified into a path P ′kl of S ′, then the
operation is necessarily CX3 (as in the others, only a solo path is modified). The
special vertex ui is the u2 in the definition, as it keeps the same special neighbor v2
in S and S ′. This vertex belongs to both Pkl and P ′kl, and the result follows.

This proves that S ′ is a C∗4+-subdivision, and the result follows by induction.

4.4 Sufficiency of the (CII) rules
As with the (CI) configurations, we need to make sure the composite rules we define
in this chapter can indeed be applied, and yield a contradiction with the existence of
their associated configuration in an MCE. Let us first prove that the rules we will define
throughout this chapter allow us to find a good coloring of an MCE, thus a contradiction,
similarly to Lemma 3.2.2 (p. 64).

Lemma 4.4.1. An MCE with a 4-family U does not contain a subdivision composite
configuration made up of a semi-subdivision S rooted on U and a mapping M of U
compatible w.r.t. S.

Proof. Let G be such an MCE, and assume it contains the composite configuration
X = ({C1, . . . , Ck}, S) where {C1, . . . , Ck} is a compatible mapping of U . The associ-
ated composite rule RX = (X, f r

X , f
c
X) is thus valid. We build a good coloring c of G to

show a contradiction.
Let us first build a coloring pc of G′ using the right number of colors. Similarly to

the proof of Lemma 3.2.2 (p. 64), let us color each K3 component of G′ with a cycle of
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length 3 and each K−5 component with a cycle of length 5 and a path of length 4. We
color each other components with a good coloring. Thus, pc uses the right number of
colors (b |V (G′)|

2
c), with a mix of cycles and paths. Let c0 = f c

X(G, pc) be the coloring of G
obtained from pc by RX . Since RX is valid, c0 has the right number of colors (b |V (G)|

2
c)

again with some cycles instead of paths. We build iteratively a good coloring c of G, by
starting from c0 and using Lemma 3.2.1 (p. 63) to successively replace a pair of colors,
inducing a path and a cycle, by another pair of colors inducing two paths.

Observe that the cycles induced by colors of c0 are disjoint in G. Indeed, the cycles
in pc are disjoint because they belong to different connected components; the cycles of
pc may have been deviated into longer cycles in c0, but since the internal vertices of the
deviated sections are all special vertices, and since each special vertex is involved in at
most one deviation, then no vertex of G can belong to the intersecion of two cycles in c0.

First let us prove that no K3 connected component can appear in G′. Let K be such
a component, colored with a cycle in pc, and let C be the cycle of G induced by the same
color in c, after some deviations. Observe that if one pattern involved in the deviations
is CT1, CT2A or CT2NA, one vertex of K is supposed to have odd degree in G′, which is
impossible since K is a K3. Since K is a connected component of G′, the vertices of C on
V (K) are only incident with edges of G[V (K)], edges between special vertices and their
remaining neighbors, and edges from the subdivision S. A semi-subdivision has at most
one pair of intersecting paths, sharing exactly one vertex. Hence, there are at least two
vertices in V (K) which are incident with 2 edges of C and 0 or 2 edges of S, and so these
two vertices have a degree of at most 4 in G. This contradicts Lemma 3.1.1, so no K3

component can be created in G′.

Now let K be a K−5 component of G′, and let C ′, P ′ be the cycle and path coloring
it in G′. Let C,P be the cycle and path induced in c0 by the same colors as C ′, P ′. C
has not been treated yet and is thus induced by the same color in c as in c0. If P = P ′,
then it is disjoint from the cycles treated in previous iterations of c, and thus has not
been involved in a replacement of a pair of colors. Otherwise, P results from deviations
of P ′ on special vertices, or an extension of P ′ by at most two edges (one for each of
its endpoints) to special vertices. If u is a special vertex touching P , since u belongs to
exactly one pattern of the mapping of X, then u does not touch a cycle treated in any
previous iteration of c. Thus P is again disjoint from the cycles treated in the previous
iterations. In both cases, P is induced by the same color in c as in c0.

Observe that V (C) ∩ V (P ) ⊆ V (K), so |V (C) ∩ V (P )| ≤ 5. We distinguish between
three cases:
• C results from a deviation of C ′: then its length is different from 5. By Obser-

vation 1 (p. 64), C ∪ P does not form the exceptional graph.
• C ′ has not been deviated, but P ′ has: then V (C) = V (K), and there is an

edge of K that does not belong to (C ∪ P )[V (C)]. Thus (C ∪ P )[V (C)]  (C ′ ∪
P ′)[V (C ′)] = K, and so (C ∪ P )[V (C)] does not form a K−5 , and by Observation 1
(p. 64), C ∪ P does not form the exceptional graph.
• Neither C ′ nor P ′ have been deviated: then (C ∪ P )[V (C)] = K, which is

a K−5 , and so E(K) ⊆ E(G). The edges of K split G into 6 regions bounded
by triangles. Since the graph is almost 4-connected w.r.t. all the special vertices,
they belong to the same region of the graph. Hence at most 3 vertices from K are
neighbors of special vertices. Since there is at most one vertex of degree at most 4
in G, all vertices from K, except maybe one, have their degree changed between G
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and G′. Only 3 of them can belong in patterns, thus at least one of them is touched
by a path Q induced by a color of c and different from P . Since C ∪ P forms the
exceptional graph, by Observation 1 (p. 64) C ∪ Q does not, and since C ′ has not
been deviated, |C| = 5, and so |V (C) ∩ V (Q)| ≤ 5.

In all three cases, Lemma 3.2.1 (p. 63) gives us a decomposition of C ∪ P or C ∪ Q
into two new paths Q′, Q′′. We replace C,P or C,Q in c, depending on the case, with
Q′, Q′′.

The coloring c contains the same number of colors as c0 in all iterations, with one less
cycle at each iteration. When all K3 and K−5 components have been treated, the resulting
coloring c is a good path decomposition of G, a contradiction.

In order to show a contradiction, we now need to prove that an MCE containing a
configuration (CII) indeed contains a subdivision composite configuration made up of a
semi-subdivision rooted on its 4-family and a compatible mapping.

Lemma 4.4.2. Let G be a planar graph with a (CII) configuration w.r.t. a 4-family U ,
that admits a strong K-subdivision rooted on U . Then G contains a subdivision composite
configuration made up of a semi-subdivision S rooted on U and a compatible mapping
w.r.t. S.

Note that the subdivision is a semi-subdivision and so it may have missing edges or
having two paths crossing, but it is 2-colorable, and therefore sufficient to produce a good
coloring of G if G is an MCE, and therefore show a contradiction.

The rest of this chapter constitutes a proof of this lemma, before the conclusion in
which we show that Lemma 4.0.1 (p. 74) ensues.

4.5 Distant problems
In the following, we prove that the graph admits a composite configuration made up of a
subdivision and a set of compatible patterns. We will distinguish two types of “problems”
that could occur and prevent us from applying directly a reduction {CN ,CN ,CN ,CN}. First,
a CN pattern could cause a “distant problem” by touching a path of the subdivision, and the
associated reduction rule could create a cycle in the coloring. Then, some special vertices
from U could cause a “close problem” by sharing some of their remaining neighbors and
the CN patterns would not be compatible. We first treat the cases with at least 3 distant
problems (Lemma 4.5.5, p. 108), then the cases with at most 2 distant problems and no
close problems (Lemma 4.6.2, p. 117) and finally the cases with at most 2 distant problems
and some close problems (Lemma 4.7.2, p. 127).

Definition 4.5.1 (Distant problem). Let G be a planar graph with a 4-family U and let
S be a strong K-subdivision rooted on U . Let u ∈ U be a special vertex and P be a path of
S that is not incident with u. We say that u causes a distant problem on P if the three
conditions are satisfied:
• u has two adjacent remaining neighbors v, v′ that are disjoint from U ;
• exactly one of its remaining neighbors belongs to P ;
• if some other special vertex u′ has one of v, v′ as a remaining neighbor, then u′ is
settled.

Figure 4.15 provides an example of distant problem. Only the path P from the defi-
nition is represented.
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Figure 4.15: Distant problem caused by a special vertex u

This definition is motivated by the fact that because of property B, an unsettled special
vertex u cannot have both its remaining neighbors belong to a path P not incident with
u.

Note that if three special vertices cause distant problems, the fourth one is lone-settled,
because of the last condition in the definition of distant problem and by properties A and
B.

Once we 2-color the subdivision S such that each vertex of U is at the end of a color,
a distant problem is active if the color that ends on u is the same as the color of the
path P . A distant problem is otherwise inactive. We can treat inactive distant problems
as CN patterns, as the coloring fits the color requirements of the pattern (i.e. the color
requirements of the two patterns (CNe) and (CNo)). Since the distant problems are caused
by special vertices u which have their remaining neighbors v, v′ adjacent, we refer to
{u, v, v′} as the triangle of u.

We prove here two results that are convenient for the rest of the proof.

Claim 4.5.2. A K4-subdivision can be 2-colored so as to inactivate up to 2 distant prob-
lems that are on different paths of S.

Proof. Let S be a K4-subdivision rooted on {u1, u2, u3, u4}. Let us assume w.l.o.g. that
u1 causes a distant problem on the path u2 ∼ u3. The following 2-coloring of S inactivates
the distant problem of u1: {(u3 → u2 → u1 → u4), (u1 → u3 → u4 → u2)}.

If S has a second distant problem on a different path, then there are several possible
cases. Either u3 causes a distant problem on u2 ∼ u4 (case A) or on u1 ∼ u4 (case B).
These cases are symmetric with the ones where u2 causes a distant problem on u3 ∼ u4 and
u1 ∼ u4 respectively. If instead the second distant problem is caused by u4 on (w.l.o.g.)
u1 ∼ u3, then this is equivalent to case A: just replace (1, 2, 3, 4) with (3, 4, 2, 1) to obtain
case A. The coloring of the previous case inactivates the two distant problems of case A,
and the coloring {(u4 → u1 → u3 → u2), (u1 → u2 → u4 → u3)} of S inactivates those of
case B.

Claim 4.5.3. Let G be a planar graph with a (CII) configuration w.r.t. a 4-family U and
a strong C∗4+-subdivision rooted on U , such that G does not have a K4-subdivision rooted
on U . If ui, uj ∈ U are 1-linked, then at most one of them has a remaining neighbor
belonging to S.

Proof. By property “1-linked” of S and property A, the remaining neighbors of ui, uj are
on parallel paths of S. Let us assume for contradiction that the 1-linked special vertices
u1, u2 are such that u1 has a remaining neighbor v1 on a (u2, u4)-path P2 of S and u2
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has a remaining neighbor v2 on a (u1, u3)-path P1 of S: let P1 = (u1, Q1, v2, Q3, u3) and
P2 = (u2, Q2, v1, Q4, u4).

Let S ′ be the set of paths of S different from P1, P2, and let P ′1 = (u1, v1, Q4, u4) and
P ′2 = (u2, v2, Q3, u3), as depicted on Figure 4.16. These (u1, u4)-path and (u2, u3)-path
are internally disjoint from the paths of S ′, hence S ′ ∪ {P ′1, P ′2} forms a K4-subdivision of
G rooted on U , a contradiction. Hence, two 1-linked special vertices cannot both have a
remaining neighbor in S.

u1

u2

u3

u4

v1

v2
S

S

S

S
S

S

S S

P2

P2

P1

P1

 

u1

u2

u3

u4

v1

v2

S

S

S

S

S S

S

S

P ′
1

P ′
2

P ′
1

P ′
2

Figure 4.16: Display of the underlying K4-subdivision of G rooted on U

Finally, S cannot have three distant problems or more, as two of them would be caused
by a pair of 1-linked special vertices.

We define below the “distant configurations” that correspond to subdivisions with at
least 3 distant problems. We first introduce a routing operation that helps us take care
of these distant problems. For each distant configuration, we perform a redirection of the
subdivision S into a subdivision S ′, to turn each special vertex causing a distant problem
into a settled one. When S has a distant problem caused by ui and S ′ has a new path
of the form (ui, vi, Q, uj), the goal is to turn the distant problem on ui into a CV pattern.
To do so, we use the following operation.

Definition 4.5.4 (Routing operation). Let G be a planar graph with a 4-family U and
a strong K-subdivision S rooted on U . Let u ∈ U have two adjacent remaining neighbors
v1, v2 w.r.t. S, and let w be a neighbor of u that belongs to S. Assume that u causes a
distant problem, with v1 touching a path of S. One of v1, v2, say v′, is not adjacent to w,
otherwise {u, v1, v2, w} would form an induced K4 in the graph, which contradicts the fact
that G has a (CII) configuration by Claim 4.0.2 (p. 75).

The paths of S are redirected to create a new subdivision S ′, containing a path P ′ =
(u, v1, Q, u

′), and such that w does not belong to S ′. Applying the routing operation on u
consists in replacing the edge uv1 in P ′ by the edges uv2, v2v1 if v′ = v1, and leaving P ′ as
it is otherwise.
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Figure 4.17: On the left: u causes a distant problem on a path P = u′ ∼ u′′ of the
subdivision. In the middle: a new subdivision is considered for some reduction rule,
with a new path P ′ = u′ ∼ u. On the right: the routing operation modifies the path
P ′ = u′ ∼ u in order to choose two non-adjacent vertices (v1, w) as remaining neighbors
for u.

This routing operation ensures that the two remaining neighbors of u in S ′ are w, v′
and are thus non-adjacent. The vertex u now forms a CV pattern w.r.t. S ′ and we justify
for each application of the routing operation that u is left settled. For all cases, we provide
a subdivision S and describe a mapping of compatible patterns that settles all vertices.

List of the distant configurations:
The distant configurations are the configurations D1, D2, D3, D4 listed below.
Each configuration describes a 4-family U and a strong K-subdivision S, such that at

least 3 special vertices of U cause a distant problem on S. For each configuration, we
describe a new semi-subdivision S ′. The routing operation is applied to S ′ for all unsettled
special vertices.

We provide for each configuration a subdivision composite rule made up of CV and CN
patterns. We justify for each rule that the mapping is compatible w.r.t. S ′.
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Figure 4.18: Semi-subdivision of D1

Configuration D1

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 causes a distant problem on the path u2 ∼ u4: it has a remaining neighbor v1

such that u2 ∼ u4 = (P 1
2 , v1, P

1
4 )

• u2 causes a distant problem on the path u3 ∼ u4: it has a remaining neighbor v2
such that u3 ∼ u4 = (P 2

3 , v2, P
2
4 )

• u3 causes a distant problem on the path u1 ∼ u4: it has a remaining neighbor v3
such that u1 ∼ u4 = (P 3

1 , v3, P
3
4 )

We transform the K4-subdivision S into another K4-subdivision S ′, by removing
the paths u1 ∼ u4, u2 ∼ u4, u3 ∼ u4, and adding the paths (u1, v1, P

1
4 ), (u2, v2, P

2
4 ),

(u3, v3, P
3
4 ).

After the routing operation is applied, all unsettled special vertices are turned into CV
patterns.

Remark: u4 could not form a C ′V pattern in S by property A and planarity, hence it
stays lone-settled in S ′.
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Figure 4.19: Semi-subdivision of D2

Configuration D2

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u2 causes a distant problem on the path u1 ∼ u3: it has a remaining neighbor v2

such that u1 ∼ u3 = (P 2
1 , v2, P

2
3 )

• u3 causes a distant problem on the path u2 ∼ u4: it has a remaining neighbor v3
such that u2 ∼ u4 = (P 3

2 , v3, P
3
4 )

• u4 causes a distant problem on the path u1 ∼ u2: it has a remaining neighbor v4
such that u1 ∼ u2 = (P 4

1 , v4, P
4
2 )

We transform the K4-subdivision S into a C4+-subdivision S ′, by removing the paths
u1 ∼ u2, u1 ∼ u3 and u2 ∼ u4, and adding the paths (u2, v2, P

2
1 , u1), (u3, v3, P

3
2 , u2),

(u4, v4, P
4
1 , u1).

After the routing operation is applied, all unsettled special vertices are turned into CV
patterns.

Remark: u1 could only form a C ′V pattern in S on the path u3 ∼ u4 by property A
and planarity, and this path was not modified in S ′. Hence, u1 remains lone-settled in S ′.
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Figure 4.20: Reduction of configuration D3

Configuration D3

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 and u2 cause distant problems on the path u3 ∼ u4: they have remaining neigh-

bors v1, v2 respectively, such that u3 ∼ u4 = (P 12
3 , v1, P

12, v2, P
12
4 )

• u3 causes a distant problem on the path u1 ∼ u2: it has a remaining neighbor v3
such that u1 ∼ u2 = (P 3

1 , v3, P
3
2 )

• Remark: u4 may cause a distant problem on u1 ∼ u2; it has a remaining neighbor
v4 that may belong to P 3

1 or P 3
2

We transform the K4-subdivision S into a C4+-subdivision S ′ by removing the paths
u1 ∼ u2 and u3 ∼ u4, and adding the paths (u1, P

3
1 , v3, u3) and (u2, v2, P

12
4 , u4). We

consider the following 2-coloring of S ′: {red = (u1 → u3 → u2 → u4), blue = (u2 → v2 →
u4 → u1 → v3 → u3)}. There is no need to apply the routing operation.

The special vertex u3 is turned into a CV pattern. The special vertices u1, u4 are
treated as CN patterns. The CN pattern of u4 may cause a distant problem on the new
path (u1, P

3
1 , v3, u3), but this path is colored blue and u4 uses the color red, hence the

distant problem is inactive.
The patterns used are CN(u1), CV (u2), CN(u3), CN(u4).
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Figure 4.21: Semi-subdivision of D4

Configuration D4

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 causes a distant problem on the path u2 ∼ u4: it has a remaining neighbor v1

such that u2 ∼ u4 = (P 1
2 , v1, P

1
4 )

• u2 causes a distant problem on the path u1 ∼ u3: it has a remaining neighbor v2
such that u1 ∼ u3 = (P 2

1 , v2, P
2
3 )

• u3 causes a distant problem on the path u1 ∼ u4: it has a remaining neighbor v3
such that u1 ∼ u4 = (P 3

1 , v3, P
3
4 )

• u4 causes a distant problem on the path u2 ∼ u3: it has a remaining neighbor v4
such that u2 ∼ u3 = (P 4

2 , v4, P
4
3 )

We transform the K4-subdivision S into another K4-subdivision S ′ by keeping the
paths u1 ∼ u2 and u3 ∼ u4 from S and adding the paths (u1, v1, P

1
4 , u4), (u2, v2, P

2
3 , u3),

(u3, v3, P
3
1 , u1), (u4, v4, P

4
2 , u2).

By planarity and definition of distant problem, the routing operation does not need
to be applied for all the special vertices to be turned into CV patterns.

The following lemma shows how a planar graph with (CII) configuration can be treated
with one of the distant configurations if the associated subdivision has at least three
distant problems.

Lemma 4.5.5 (Distant lemma). Let G be a planar graph with a (CII) configuration
w.r.t. a 4-family U , with a strong K-subdivision S rooted on U . If G has at least 3 distant
problems w.r.t. S, then G contains a configuration among {D1, D2, D3, D4}.

Proof. If S is a C4+-subdivision, we may assume that G does not have a K4-subdivision
rooted on U . Then Claim 4.5.3 (p. 102) tells us that S cannot have 3 distant problems
or more, which contradicts our hypothesis. Hence S is a K4-subdivision.

Let us call i-path a path of S that touches exactly i triangles of special vertices. We
consider the three quantities, for i ∈ {0, 1, 2}, pi := |{i-paths}|. By property A, a special
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vertex u can only cause a distant problem on one of the three paths of S that are not
incident with it: we call these paths the potential paths of u. For the same reasons, a
path of S can touch at most 2 triangles of special vertices.

We have p0 +p1 +p2 = 6 and p1 + 2 ·p2 = number of distant problems = 3 or 4. Hence
we need to consider five cases, depending on whether there are 3 or 4 distant problems
and on the values the pi parameters.
• 3 distant problems, p1 = 3, p2 = 0. We have p0 = 3. If all three 0-paths are

incident with say u4, then there cannot be three 1-paths. Indeed, u3 would have to
cause a distant problem on u1 ∼ u2, then by planarity none of u1, u2 could cause a
distant problem on u2 ∼ u3, u1 ∼ u3 respectively.
Now let us assume that the three 0-paths form a subdivision of a triangle rooted
on {u1, u2, u3}. Thus u4 cannot cause any distant problem. The three 1-paths are
u1 ∼ u4, u2 ∼ u4, u3 ∼ u4. Let us say w.l.o.g. that u3 causes a distant problem on
u1 ∼ u4. Thus by planarity u2 causes a distant problem on u3 ∼ u4, and u1 causes
a distant problem on u2 ∼ u4. This is the configuration D1.
Let us finally assume that the three 0-paths form a subdivision of a path on three
edges, rooted on U . Let us say that the 0-paths are u1 ∼ u4, u3 ∼ u4, u2 ∼ u3.
The path u2 ∼ u4 touches the triangle of either u1 or u3. If it touches the triangle
of u3, then u1 cannot cause any distant problem (as its two other potential paths
are 0-paths), thus in this case both u2 and u4 cause a distant problem. There is
only one possibility for u2: it causes a distant problem on u1 ∼ u3; then there is
only one possibility for u4, the path u1 ∼ u2. This is the configuration D2. Now
assume that instead, u2 ∼ u4 touches the triangle of u1. By planarity and property
A, only u3 can touch the 1-path u1 ∼ u2. Again by planarity, only u4 can touch the
1-path u1 ∼ u3. This case is equivalent to D2: (u1, u2, u3, u4) in D2 correspond to
(u2, u1, u4, u3) in this case, in this order.
• 3 distant problems, p1 = 1, p2 = 1. We have p0 = 4: the four 0-paths can only

either form a subdivision of the “paw” graph (a triangle with an additional edge
attached to one vertex) or a subdivision of the cycle on four vertices. We can easily
see that the first case is impossible: let us say the non-0-paths are u1 ∼ u2, u1 ∼ u3;
there must be a path that touches two triangles of U , say it is u1 ∼ u2, that
necessarily touches the triangles of u3 and u4. Then by planarity, the path u1 ∼ u3
cannot touch the triangle of u2 and thus cannot be a 1-path. Hence the 0-paths
cannot form a paw.
Now let us assume that the 0-paths are u1 ∼ u3, u2 ∼ u3, u1 ∼ u4, u2 ∼ u4. Let
us assume w.l.o.g. that each of u1, u2 causes a distant problem on u3 ∼ u4, and u3
causes a distant problem on u1 ∼ u2. This case can be treated as configuration D3.
• 4 distant problems, p1 = 4, p2 = 0. We have p0 = 2, so the two 0-paths can

either be incident on one vertex or disjoint. Let us consider the first case. Assume
that u1 ∼ u4, u2 ∼ u4 are the 0-paths; the other four paths are 1-paths and must
each touch one triangle of U , so all of u1, u2, u3, u4 cause a distant problem. The
vertex u3 causes a distant problem on u1 ∼ u2, as it is its only potential path. Then
w.l.o.g. u4 causes a distant problem on u2 ∼ u3, and u1 can only cause a distant
problem on u3 ∼ u4. Finally, by planarity the triangle of u2 cannot touch the path
u1 ∼ u3, its only potential path left. Hence, the 0-paths cannot be incident.
Now let us assume that the two 0-paths are u1 ∼ u2, u3 ∼ u4. Assume w.l.o.g.
that u1 causes a distant problem on u2 ∼ u4. Then u3 causes a distant problem on
u1 ∼ u4 as it is its last potential path. In the same way, u2 causes a distant problem
on u1 ∼ u3 and u4 on u2 ∼ u3. This is the configuration D4.
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• 4 distant problems, p1 = 2, p2 = 1. Let us assume that u1 and u2 cause distant
problems on the same 2-path u3 ∼ u4. By planarity, the triangle of u3 can only
reach the path u1 ∼ u2, and so does the triangle of u4. Therefore, there cannot be
two distinct 1-paths. Hence, this case is impossible.
• 4 distant problems, p1 = 0, p2 = 2. If we assume that the path u3 ∼ u4 touches

the triangles of u1 and u2, then necessarily the path u1 ∼ u2 touches the triangles
of u3 and u4. This is again configuration D3.

This concludes the proof.

4.6 Semi-distant configurations
We can now focus on the cases where the subdivision has up to 2 distant problems. Let
us define another type of problem that we have to deal with in order to finish the proof
of Lemma 4.4.2 (p. 101).

Definition 4.6.1 (Close problem). Let G be a planar graph with a 4-family U and let
S be a K-subdivision rooted on U . A special vertex u ∈ U causes a close problem if it
is unsettled w.r.t. S and shares at least one of its remaining neighbors with at least one
other unsettled special vertex.

Note that by definition there are either zero or at least two special vertices causing a
close problem; there cannot be a single special vertex causing a close problem on its own.
Also, note that by definition, an unsettled special vertex that does not cause a distant
nor a close problem forms a CN pattern that is disjoint from S and that touches only CV
patterns, hence its reduction rule can be applied safely.

Let us first deal with subdivisions that have at most 2 distant problems and no close
problem, with the following semi-distant configurations and their associated subdivision
composite rules. We will then deal with subdivisions with close problems in Section 4.7.

List of the semi-distant configurations:
The semi-distant configurations are the configurations J1, J2, J3, J4, J5, J6 listed

below.
Each configuration describes a 4-family U and a strong K-subdivision S, such that at

most 2 special vertices of U cause a distant problem on S, and none cause close problems.
For each configuration, we describe a new semi-subdivision S ′. The routing operation is
not applied to S ′ unless stated otherwise.

We provide for each configuration a subdivision composite rule. We justify for each
rule that the mapping is compatible w.r.t. S ′.
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Figure 4.22: J1 in a case where u1 and u3 cause distant problems

Configuration J1

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• At most 2 special vertices cause distant problems
• If there are two distant problems, they are not on the same path of S
• The special vertices that do not cause distant problems are settled
We consider a 2-coloring of S given by Claim 4.5.2 (p. 102) to inactivate the two

potential distant problems.
The patterns used are CN for all special vertices.
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Figure 4.23: J2 in a case where the length of u1 ∼ u2 is at least 2

Configuration J2

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 and u2 cause distant problems on the path u3 ∼ u4: the path u3 ∼ u4 =

(u3, P1, v1, P2, v2, P3, u4), with v1, v2 being remaining neighbors of u1, u2 respectively,
and l(P1), l(P2), l(P3) ≥ 1; we denote v′1, v′2 the other remaining neighbor of u1, u2
respectively
• u3, u4 are settled
• Either l(u1 ∼ u2) ≥ 2 or neither u3 nor u4 has v′1, v′2 as remaining neighbors
• If u1 ∼ u2 has length 2 (u1, w, u2), then w has at most 1 neighbor among u3, u4, or

at least one of v′1, v′2 does not have a neighbor in {u3, u4}
We transform the K4-subdivision S into a C4+-subdivision S ′, by removing the paths

u1 ∼ u2 and u3 ∼ u4 from S, and adding the paths (u1, v1, P1, u3) and (u2, v2, P3, u4).
The special vertices u1, u2 are thus turned into CV patterns, unless the path u1 ∼ u2

from S has length 1, in which case u1, u2 form a CU pattern. By the fourth condition of
this configuration, neither u3 nor u4 has v′1, v′2 as remaining neighbors, thus they remain
settled (the case where one has v′1, v′2 as remaining neighbors is treated as J3).

Instead of CV patterns, u1 or u2 may form CT2NA patterns with u3 or u4. If there are
two such patterns, for instance CT2NA(u1, u3) and CT2NA(u2, u4), they may only intersect
if they have a common vertex in the path u1 ∼ u2 of S. By the last condition of the
configuration, this is not the case (this case is treated as J4).

The patterns used are CV (u1), CV (u2), or CT2NA(ui, uj) for i ∈ {1, 2} and j ∈ {3, 4},
or CU(u1, u2), CN(u3), CN(u4).
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Figure 4.24: Reduction of configuration J3

Configuration J3

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 and u2 cause distant problems on the path u3 ∼ u4: the path u3 ∼ u4 =

(u3, P1, v1, P2, v2, P3, u4), with v1, v2 being remaining neighbors of u1, u2 respectively,
and l(P1), l(P2), l(P3) ≥ 1; we denote v′1, v′2 the other remaining neighbor of u1, u2
respectively
• l(u1 ∼ u2) = 1
• u4 has v′1, v′2 as remaining neighbors
• u3 is settled
Remark: u4 is initially settled, but the rule that follows changes its CV nature into a

CN one.
We transform the K4-subdivision S into a C4+-subdivision S ′, by removing the paths

u1 ∼ u2 and u3 ∼ u4 from S, and adding the paths (u1, v1, P1, u3) and (u2, v2, v
′
2, u4).

The special vertices u1, u2 are thus turned into a CU pattern, while u4 is turned into
a CN . If v2 is adjacent to u4, it becomes one of its remaining neighbors in S ′, and in this
case u4 causes a distant problem. We inactivate this problem by maybe swapping the
colors of the paths u2 ∼ u4 and (u2, v2, v

′
2, u4) in a 2-coloring of S ′.

The patterns used are CU(u1, u2), CN(u3), CN(u4).
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Figure 4.25: Reduction of configuration J4. Example of a 2-coloring of S ′

Configuration J4

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4
• u1 has two adjacent remaining neighbors v1, v′1, with v1 ∈ u3 ∼ u4
• u2 has two adjacent remaining neighbors v2, v′2 with v2 ∈ u3 ∼ u4
• v1, v2 may be equal, or come in any order on u3 ∼ u4
• u1 ∼ u2 has length 2: call the third vertex w
• u3 has v′2, w as remaining neighbors
• u4 has v′1, w as remaining neighbors
We transform the K4-subdivision S into another K4-subdivision S ′ by replacing the

path u3 ∼ u4 by the path (u3, v
′
2, v2, . . . , u4). The vertices u3, u4 are turned into CV

patterns and u2 into a C ′V pattern. Depending on the order of v1, v2 on the path u3 ∼ u4
of S, u1 forms a CN that may cause a distant problem on the new path (u3, v

′
2, v2, . . . , u4).

We consider a coloring of S ′ given by Claim 4.5.2 (p. 102) to inactivate it.
The patterns used are CN(u1), C ′V (u2), CV (u3), CV (u4).
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Figure 4.26: J5 when u1 and u4 cause distant problems

Configuration J5

Properties:
• The graph has a strong C∗4+-subdivision S rooted on u1, u2, u3, u4, such that u1, u2

are 1-linked and u1, u3 are 2-linked
• There are at most 2 distant problems: if there is at least one, we may assume w.l.o.g.

that u1 causes a distant problem on a (u2, u4)-path P24

• u2 is settled
• u3 is settled or causes a distant problem on the (u2, u4)-path P ′24 of S different from
P24

We consider a 2-coloring of S that inactivates the distant problems: {red = (u3 →
u1 → u2 → u4), blue = (u1 → u3 → u4 → u2)} in such a way that P24 receives the color
red. The distant problem of u1 is thus inactivated. Since the colors ending on u1 and
u3 are different, and since the colors of P24 and P ′24 are different, the potential distant
problem of u3 is inactivated. If u4 causes a distant problem instead, we inactivate it by
maybe swapping the colors of the two paths between u1 and u3.

The patterns used are CN for all the special vertices, or possibly CT2NA(u1, u2) and
CT2NA(u3, u4).
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Figure 4.27: Reduction of configuration J6

Configuration J6

Properties:
• The graph has a strong C∗4+-subdivision S rooted on u1, u2, u3, u4, such that u1, u2

are 1-linked and u1, u3 are 2-linked
• u1 and u3 cause distant problems on a path P24 between u2 and u4
• u2 and u4 are settled and their remaining neighbors are disjoint from S
Assume w.l.o.g. that the path P24 = (u2, Q1, v1, Q2, v3, Q3, u4), where v1, v3 are re-

maining neighbors of u1, u3 respectively, and l(Q1), l(Q2), l(Q3) ≥ 1. Each of u1, u3 has
another remaining neighbor v′1, v′3 respectively, adjacent to v1, v3 respectively. The vertices
v′1, v

′
3 belong to a region of the graph delimited by the four paths P24, u1 ∼ u2, u3 ∼ u4

and a path P13 of S between u1 and u3. Let P ′13 be the other path of S between u1 and
u3. We transform the C4+-subdivision S into another C4+-subdivision S ′, by removing
the paths P ′13 and P24, and adding the paths (u1, v1, Q1, u2) and (u3, v3, Q3, u4).

The remaining neighbors of u1 (resp. u3) w.r.t. S ′ are non-adjacent, and since the
remaining neighbors of u2 (resp. u4) are disjoint from S, (u1, u2) (resp. (u3, u4)) cannot
from a CT2NA pattern.

The special vertices u1, u3 are thus turned into CV patterns, unless the path P ′13 has
length 1, in which case they form a CU pattern. In the latter case, by property “0-linked”,
none of u2, u4 can have both v′1, v

′
3 as remaining neighbors, and by property “2-linked”,

the remaining neighbors of u2, u4 are disjoint, so u2 and u4 remain settled w.r.t. S ′.
The patterns used are CV (u1), CN(u2), CV (u3), CN(u4), or CU(u1, u3).
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The following lemma shows that we can treat any subdivision that has at most 2
distant problems and no close problem with one of the semi-distant configurations.

Lemma 4.6.2 (Semi-distant lemma). Let G be a planar graph with a (CII) configuration
w.r.t. a 4-family U , with a strong K-subdivision S rooted on U . If G has at most 2 distant
problems and no close problem w.r.t. S, then G contains a configuration among {J1, J2,
J3, J4, J5, J6}.

Proof. Let us consider the case where S is a K4-subdivision. If it has at most one distant
problem, or two distant problems on different paths of S, then this is configuration J1. If
u1, u2 ∈ U both cause distant problems on the same path u3 ∼ u4 of S, then we distinguish
between 3 cases. Let v1, v2 be the remaining neighbors of u1, u2 respectively that are on
the path u3 ∼ u4, and let v′1, v′2 be their other remaining neighbors. If l(u1 ∼ u2) = 1
and u3 or u4 has both v′1, v

′
2 as remaining neighbors, then this is configuration J3. If

l(u1 ∼ u2) = 2, with w as the middle vertex, w is adjacent to u3 and u4, and v′1, v
′
2

are remaining neighbors of u3 or u4, then this is configuration J4. Otherwise, this is
configuration J2.

Now let us consider the case where S is a C4+-subdivision. By property “1-linked”
and property A of S, the distant problems occur on parallel paths of S. Thus, if there
is at most one distant problem, this is configuration J5. By Claim 4.5.3 (p. 102), two
distant problems cannot be caused by 1-linked special vertices. Therefore, if there are
two distant problems on different paths of S, then this is configuration J5. If there are
two distant problems caused by (w.l.o.g.) u1, u3 on the same parallel (u2, u4)-path of S,
by Claim 4.5.3 (p. 102) the remaining neighbors of u2, u4 are disjoint from S, and this is
configuration J6. This concludes the proof.

K4

1 distant problem: J1

2 distant problems on different paths: J1

2 distant problems on the same path:

General case: J2

Specific case #1
(contact CU+CV ): J3

Specific case #2
(contact CT2NA+CT2NA): J4C4+

≤ 1 distant problem: J5

2 problems

On different paths: J5

On the same path: J6

Figure 4.28: Semi-distant lemma trees of cases
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4.7 Close configurations
For simplicity, we define some macros that encapsulate several patterns and configurations
from the redirection procedure.
• CD1: In this configuration, u1, u2 ∈ U are linked by a path u1 ∼ u2 in S. The

vertices u1, u2 have a common remaining neighbor v and have another remaining
neighbor v1, v2 respectively, both adjacent to v. The vertices v and v1 are disjoint
from S, and if v2 is in S, it belongs to a path of S incident with u1 and not u2.
First let us assume that v2 is not in S. If the path u1 ∼ u2 has length 1, then it is
a CDa pattern if v1, v2 are not adjacent, or a CDb pattern if they are. If u1 ∼ u2 has
length at least two, then this is forbidden by the redirection procedure, as this is a
CX1 or CX2 configuration depending on whether v1 is adjacent to the neighbor w1 of
u1 on u1 ∼ u2.
Now if there is a path u1 ∼ u′ in S that touches v2, with u′ 6= u2, then it is a CX3

configuration, forbidden by property C.
• CD2: The vertices u1, u2 are linked by a path u1 ∼ u2 in S. The vertices u1, u2 have

two remaining neighbors v, v′ in common. No path of S touches v, v′.
If v, v′ are not adjacent, then this is (CT2NAa) or (CT2NAb) depending on the parity
of v, v′. Now assume v, v′ are adjacent, and let l be the length of u1 ∼ u2. If l = 1,
then {u1, u2, v, v′} form an induced K4, contradicting the fact that G has a (CII)
configuration by Claim 4.0.2 (p. 75). Then l ≥ 2 and this is configuration CX4 from
the redirection procedure, hence forbidden by property C.

To summarize, apart from forbidden configurations removed by the redirection pro-
cedure, a CD1 macro is a CDa or CDb pattern. A CD2 is a CT2NA pattern and in this case
u1, u2 are therefore settled if no unsettled special vertex shares remaining neighbors with
them. See Figure 4.29.
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Figure 4.29: Possible patterns for each macro

Let us now introduce the remaining configurations, with which we treat all the cases
of K-subdivisions with close problems.
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List of the close configurations:
The close configurations are the configurations R1, . . . , R9 listed below.
Each configuration describes a strong K-subdivision S rooted on a 4-family U =

{u1, u2, u3, u4}, such that at most two special vertices cause distant problems, and some
special vertices cause close problems. We describe for each a subdivision composite rule
made up of a semi-subdivision S ′ (if not specified, S ′ = S) and a compatible mapping
w.r.t. S ′.

Remark: When two remaining neighbors of a special vertex form a CN pattern or a
C ′V pattern, we denote it by CN for simplicity. This does not change the case analysis.

u1 u2
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u4

v

v2v1

S

S
S
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S

S

 

u1 u2

u3

u4

v

v2v1S
S

S
S

S
CN

CN

CD1

Figure 4.30: Reduction of configuration R1. u3, u4 may cause distant problems

Configuration R1

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, with 2 special

vertices involved in a close problem: u1, u2 share a remaining neighbor v
• v /∈ S
• u1, u2 each have another remaining neighbor v1, v2 respectively, and v1 6= v2
• Remark: each of u3, u4 is either settled or causes a distant problem
We consider a 2-coloring of S given by Claim 4.5.2 (p. 102) to inactivate the two

potential distant problems on u3 and u4. If one of v1, v2 is not adjacent to v, then its
associated special vertex forms a CV pattern and is thus settled: a contradiction, as u1
and u2 are the ones causing a close problem. Hence v1, v2 are both adjacent to v. The
vertices u1 and u2 form a CD1 configuration, hence a CDa or CDb pattern. Note that v2
cannot belong to the path u1 ∼ u3 and v1 cannot belong to u2 ∼ u3, as this would form
a CX3 configuration, forbidden by the redirection procedure.

The patterns used are CDa or CDb(u1, u2), CN(u3), CN(u4).
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Figure 4.31: Reduction of configuration R2

Configuration R2

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, without distant

problems and such that 2 special vertices are involved in a close problem: u1, u2
share two remaining neighbors v, v′
• v /∈ S and v′ ∈ S
• Remark: each of u3, u4 is either settled or causes a distant problem
By planarity and property A, there is at most one distant problem, caused by u3 or

u4 on the path u1 ∼ u2. If it is the case, we assume w.l.o.g. that this is u3.
Let us color S with this 2-coloring: {red = (u2 → u1 → u3 → u4), blue = (u1 → u4 →

u2 → u3)}. The colors ending on u1, u2 are different, so u1, u2 form a CT2NA pattern that
crosses the red path u3 ∼ u4. This is authorized by the definition of CT2NA. The potential
distant problem of u3 is inactive in this coloring of S.

The patterns used are CT2NA(u1, u2), CN(u3) (or C ′V ), CN(u4).

Configuration R3

Properties:
• The graph has a strong K4-subdivision S
• u1, u2 each have two remaining neighbors v1, v′1 and v2, v′2 respectively
• v1, v2 belong to u3 ∼ u4; by convention u3 ∼ u4 = (u3, P1, v1, P2, v2, P3, u4), with
l(P1), l(P3) ≥ 1 and l(P2) ≥ 0 (so v1 may equal v2)
• If v1 6= v2, v′1, v′2 are disjoint from S
• Remark: if v1 = v2, then v′1, v′2 may belong to u3 ∼ u4 and v′1 may equal v′2
• If v′1 (resp. v′2) does not belong to S, then it is adjacent to v1 (resp. v2)
• u3, u4 each have two remaining neighbors v3, v′3 and v4, v′4 respectively
• The path u1 ∼ u2 does not have length 1
• If u1 ∼ u2 has length 2, let w be its middle vertex. Then w has at most 1 neighbor

among u3, u4, or at least one of v′1, v′2 does not have a neighbor in {u3, u4}
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Figure 4.32: R3 when v1 6= v2, v′1 6= v′2

We transform the K4-subdivision S into a C4+-semi-subdivision S ′ by removing the
paths u1 ∼ u2 and u3 ∼ u4, and adding the paths (u1, v1, P1, u3) and (u2, v2, P3, u4) if
v1 6= v2 or if v1 = v2 and v′1 6= v′2. Otherwise, we have v1 = v2 and v′1 = v′2, and we assume
u3 ∼ u4 = (u3, Q1, v

′
1, Q2, v1, Q3, u4). In this case, we add the paths (u1, v

′
1, Q1, u3) and

(u2, v1, Q3, u4) to S ′ instead. This semi-subdivision has two paths that intersect if v1 = v2
and v′1 6= v′2 (l(P2) = 0), but it is 2-colorable with the coloring {red = (u2 → u4 → u1 →
v1 → u3), blue = (u1 → u3 → u2 → v2 → u4)}.

Since the path u1 ∼ u2 of S does not have length 1, the special vertices u1, u2 form CV
patterns in S ′.

The special vertices u3, u4 may form CT2NA patterns in S ′ with each of u1, u2. These
patterns may only touch each other on the path u1 ∼ u2 from S, but the last condition
of the configuration ensures that this is not the case (this case is treated as configuration
J4).

Otherwise, the vertices u3, u4 form CN patterns if they do not have common remaining
neighbors. These CN patterns are compatible with the CV patterns of u1, u2.

Remark: If v′1 6= v′2 and u4 has both as its remaining neighbors, then u4 forms a CV
pattern which touches the CV patterns of u1 and u2. The precise case where u4 has v1, v2
as remaining neighbors and u1 ∼ u2 has length 1 in S is treated as configuration J3.

The special vertices u3, u4 may also form a CT1, CT2A or CT2NA pattern, since the colors
ending on each vertex are different in any 2-coloring of S ′.

The patterns used are CV (u1), CV (u2) and CT1, CT2A or CT2NA(u3, u4), or CN for u3, u4.
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Figure 4.33: R4 when l(u1 ∼ u2) ≥ 2 in S

Configuration R4

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, with 3 special

vertices involved in a close problem: u1, u2, u3.
• The vertices u1, u3 share a remaining neighbor v13 /∈ S
• u1, u2, u3 share a remaining neighbor v123 (different from v13)
• u2 has another remaining neighbor v2 adjacent to v123
• Remark: u4 is either settled or causes a distant problem
By planarity and property A, v13 and v123 do not belong to S. The special vertices

u1, u3 thus form a CD2 configuration, which is therefore a CT2NA pattern: the vertices v13
and v123 are non-adjacent. However, this pattern is not compatible with a CN pattern
applied to u2.

The vertex u4 may cause a distant problem or cause a C ′V pattern on the path u1 ∼ u3
or (w.l.o.g.) u2 ∼ u3. We replace the K4-subdivision S with another K4-subdivision S ′
by replacing the path u1 ∼ u2 with the path (u1, v123, u2). If u4 causes a distant problem
on u1 ∼ u3 or u2 ∼ u3, we use Claim 4.5.2 (p. 102) and consider a 2-coloring of S ′ that
inactivates it.

By planarity and property A, v2 does not belong to S. The vertices u1 and u2 form
either a CV and a CN in S ′, or a CU pattern depending on the length of the original u1 ∼ u2
in S.

The pattern used are CV (u1), CN(u2), or CU(u1, u2), CV (u3), CN(u4) (or C ′V ).

122



u1 u2

u3

u4

v13

v12

v2

v3

S

S
S

S
S

S

 

u1 u2

u3

u4

v13

v12

v2

v3

S

S

S
S

S
CN

S

S

CNCDb

Figure 4.34: Reduction of configuration R5. The special vertex u4 may cause a distant
problem on u1 ∼ u2 or u2 ∼ u3

Configuration R5

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, with 3 vertices

involved in a close problem: u1, u2, u3.
• u1, u3 share a remaining neighbor v13 (which is not a neighbor of u2)
• u1, u2 share a remaining neighbor v12 (which is not a neighbor of u3)
• u2, u3 each have another remaining neighbor v2, v3 respectively, and v2 6= v3
• v3, v12 are not adjacent
• None of v13, v12, v2, v3 belong to S
• The graph contains the edges v13v3, v13v12, v12v2
• Remark: u4 is either settled or causes a distant problem
At least one edge among v2v13, v3v12 does not exist by planarity (otherwise {(u1, v2, v3),

(u2 = u3, v12, v13)} form a K3,3 minor by contracting the path u2 ∼ u3). Assume w.l.o.g.
that the edge v3v12 is absent from the graph.

The vertices u1, u3 form a CD1 configuration, and since v3v12 does not exist, they form
a CDb pattern. By planarity and property A, v2 does not belong to S. Hence, u2 can be
treated as a CN pattern that is compatible with the CDb pattern, since it touches only v12.
We use Claim 4.5.2 (p. 102) and consider a 2-coloring of G that inactivates the potential
distant problem caused by u4.

The patterns used are CDb(u1, u3), CN(u2), CN(u4).
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Figure 4.35: R6 when u1, u2 and u3, u4 form CD1 configurations

Configuration R6

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, with all 4 special

vertices involved in close problems
• u1, u2 share a remaining neighbor v12 /∈ S
• u3, u4 share a remaining neighbor v34 /∈ S
• u1, u2, u3, u4 each have another remaining neighbor v1, v2, v3, v4 respectively
• v1, v2 are disjoint from v3, v4
• Remark: it may be that v1 = v2 or v3 = v4
• v1, v2, v3, v4 are disjoint from S
This case is straightforward: each of (u1, u2) and (u3, u4) forms a CD1 or CD2 configu-

ration, which can be a CDa, CDb or CT2NA pattern. By definition, these two patterns are
disjoint.
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Figure 4.36: R7 when l(u2 ∼ u4) ≥ 2 in S

Configuration R7

Properties:
• The graph has a strong K4-subdivision S rooted on u1, u2, u3, u4, with all 4 special

vertices involved in one close problem
• u1, u2, u3 share a remaining neighbor v123 /∈ S
• u1, u2, u4 share a remaining neighbor v124 /∈ S
• u3, u4 do not share a remaining neighbor
• u3, u4 each have another remaining neighbor v3, v4 respectively, adjacent to v123, v124

respectively
We first claim that v4 cannot be adjacent to v123. If it is the case, then {(u1, u2, v4),

(u4, v123, v124)} form a K3,3-minor, a contradiction with the planarity of G.
We replace the K4-subdivision S with another K4-subdivision S ′ by removing the path

u2 ∼ u4 and adding the path (u2, v124, u4).
The special vertex u1 forms a CV pattern and u3 a CN pattern disjoint from S ′ by

property A and planarity. u2 forms a CV and u4 a CN pattern, unless the length of
u2 ∼ u4 in S is 1. In this case u2, u4 form a CU pattern, since v4, v123 are non-adjacent.
The CN patterns are disjoint and may only touch CV patterns, hence the mapping is
compatible.

The patterns used are CV (u1), CN(u3) and either CV (u2) and CN(u4) or CU(u2, u4).
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Figure 4.37: R8 when u3 causes a distant problem and u1, u2 form a CD1 configuration.
Example of a 2-coloring of S

Configuration R8

Properties:
• The graph has a strong C∗4+-subdivision S rooted on u1, u2, u3, u4, such that u1, u2

are 1-linked and u1, u3 are 2-linked
• There is at most one distant problem, caused by u3 on a (u2, u4)-path of S if there

is one
• u1, u2 share a remaining neighbor
• There is no remaining neighbor in common between one of u1, u2 and one of u3, u4
• Remark: if there is no distant problem, u3 and u4 may share a remaining neighbor
If u3 causes a distant problem, it is necessarily on a parallel (u2, u4)-path of S by

property “1-linked” of S and property A, and then we may swap the colors of the two
(u2, u4)-paths in a 2-coloring of S to inactivate this distant problem.

By the last property of this configuration, u1, u2 form a CD1 or CD2 pattern, and u3, u4
as well if u3 does not cause a distant problem.

The patterns used are thus CDa, CDb or CT2NA for (u1, u2) and maybe for (u3, u4), or
CN(u3), CN(u4).

Configuration R9

Properties:
• The graph has a strong C∗4+-subdivision S rooted on u1, u2, u3, u4, such that u1, u2

are 1-linked and u1, u3 are 2-linked
• u2, u4 share exactly remaining neighbor v24, and it belongs to a parallel (u1, u3)-path
P13 of S
• The other remaining neighbors v2, v4 of u2, u4 respectively are both adjacent to v24
• The remaining neighbors of u1, u3 are disjoint from S
• Remark: there is no distant problem
Let us write P13 = (u1, Q1, v24, Q2, u3). We transform the C4+-subdivision S into

another C4+-(semi-)subdivision S ′ by removing the paths P13 and any of the two (u2, u4)-
paths of S, P24, and adding (u1, Q1, v24, u2) and (u3, Q2, v24, u4). This semi-subdivision
has a contact between the two new paths on v24, so in a 2-coloring of S ′ we may swap the

126



u1

u2

u3

u4

v24

S

S

S
S

S

S

S

S S

 
u1

u2

u3

u4

v24

P1

P2

P2

P1

P1 P2

CN CN
P2 P1

CV CV

Figure 4.38: Reduction of configuration R9

colors of the two (u1, u2)-paths to have different colors on the new paths.
The special vertices u2, u4 form CV patterns in S ′ by planarity, and since the remaining

neighbors of u1, u3 are disjoint from S, none of (u1, u2) or (u3, u4) form CT2NA patterns.
The patterns used are CN(u1), CV (u2), CN(u3), CV (u4), or maybe CT2NA(u1, u2) or

CT2NA(u3, u4).

Before entering the proof of the final lemma of this chapter, let us show a useful claim.

Claim 4.7.1. Let G be a planar graph with a (CII) configuration w.r.t. a 4-family U ,
with a K-subdivision S rooted on U .

If u ∈ U has no remaining neighbors in common with other special vertices, then either
u causes a distant problem in S or u is lone-settled.

Proof. Let us assume that u does not cause a distant problem in S. Since it does not
share remaining neighbors with other special vertices, it cannot form a CT2NA pattern
w.r.t. S. Hence, since no pair of special vertices forms a CU pattern by property A, if the
remaining neighbors of u are non-adjacent, u forms a CV pattern and is lone-settled.

If its remaining neighbors are adjacent, since u does not share remaining neighbors
and does not cause a distant problem, either none or both of its remaining neighbors
belong to S. Then either its remaining neighbors are disjoint from S and u forms a CN
pattern, or by property B and planarity u has both remaining neighbors in S and forms
a C ′V pattern. In both cases, it is lone-settled.

We can now show how all the remaining cases of K-subdivisions with close problems
can be taken care of with the previous close configurations.

Lemma 4.7.2 (Close lemma). Let G be a planar graph with a (CII) configuration w.r.t.
a 4-family U , with a K-subdivision S rooted on U , with at most 2 distant problems and
some close problems w.r.t. S. Then G has a configuration among {R1, R2, R3, R4, R5,
R6, R7, R8, R9, J4}.

Proof. We start by solving the C4+ cases: see Figure 4.39 for the tree of cases.
If S is a C∗4+-subdivision, let U = {u1, u2, u3, u4} be such that u1, u2 are 1-linked, and

u1, u3 are 2-linked. We can assume that G does not have a K4-subdivision rooted on U .
If S has distant problems, they are on parallel paths by property “1-linked” and prop-

erty A. By Claim 4.5.3 (p. 102), S does not have two distant problems caused by 1-linked
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special vertices. If S has two distant problems caused by two 0-linked special vertices,
then by property “0-linked”, the other two 0-linked special vertices do not share remain-
ing neighbors, and are thus lone-settled by definition of close problem and Claim 4.7.1
(p. 127). So S does not have close problems, which is a contradiction. If S has two distant
problem caused by 2-linked special vertices, then by Claim 4.5.3 (p. 102), the other two
special vertices have no remaining neighbor on S. By property “2-linked”, this means
that they do not share remaining neighbors, which means that they are (lone-)settled and
there is no close problem, a contradiction.

So S has at most one distant problem, caused by u3 if so. Let us first consider the case
where remaining neighbors of {u1, u2} are disjoint from the ones of {u3, u4}. If u3 causes
a distant problem, then by Claim 4.7.1 (p. 127) u4 is lone-settled, and thus (u1, u2) must
form a CD1 or CD2 configuration to be unsettled. If u3 does not cause a distant problem,
at least one pair among (u1, u2) and (u3, u4) forms a CD1 or CD2 configuration. In all cases,
this is configuration R8.

Now, let us consider the case where {u1, u2} share some remaining neighbors with
{u3, u4}. By property “0-linked”, two 0-linked special vertices cannot share remaining
neighbors. If u2, u4 share remaining neighbors, by property “2-linked” they share exactly
one and it belongs to a parallel (u1, u3)-path of S. Therefore, by Claim 4.5.3 (p. 102), the
remaining neighbors of u1, u3 are disjoint from S, thus disjoint, and this is configuration
R9.

C4+

2 distant problems: impossible

≤ 1 distant problem

r.n. of 2-linked disjoint: R8

Two 2-linked share a r.n.: R9

Figure 4.39: Close lemma: tree of C4+ cases

Let us now deal with the K4 cases: see Figure 4.40 for the tree of cases.
We first examine the cases in which there are only two vertices involved in a close

problem: we assume w.l.o.g. that these two vertices are u1, u2, they share a remaining
neighbor v, and u3, u4 are either settled or cause distant problems. One may form a CN
pattern disjoint from S and touching only patterns from settled vertices, but we treat it
as settled.

We first examine the case where v /∈ S. If u1, u2 share only one remaining neighbor,
this is configuration R1. So now assume u1, u2 share another remaining neighbor v′. If
v′ /∈ S, then this is a CD2 configuration where u1, u2 form a CT2NA pattern, as no other
special vertex can cause a close problem by hypothesis, and by property A no path of S
can touch v or v′. Thus u1, u2 are settled, a contradiction. Otherwise, v′ ∈ S and this is
configuration R2.

Now let us assume that v ∈ S. By property A, v necessarily belongs to the path
u3 ∼ u4. We can immediately see that if u1, u2 share another remaining neighbor v′ /∈ S,
then this is a case that has already been treated, by swapping v and v′. Now u1, u2 may
have another common remaining neighbor v′ ∈ S, necessarily in the path u3 ∼ u4, or each
of u1, u2 can have another remaining neighbor v′1, v′2 respectively, both adjacent to v to be
unsettled. All these cases are treated as configuration R3, except in one particular case:

128



there is a vertex w on u1 ∼ u2 that is a common neighbor of u1, u2, u3, u4, the special
vertex u4 is adjacent to v′1, while u3 is adjacent to v′2, and in this case it is configuration
J4. This concludes the cases with two special vertices involved in a close problem.

Let us now examine the cases with 3 vertices involved in a close problem, say u1, u2, u3.
We can assume w.l.o.g. that u1, u3 share a remaining neighbor v13. There is at most one
distant problem, caused by u4 if so; otherwise, u4 is lone-settled by definition of distant
problem. The special vertices u1, u2, u3 each have another remaining neighbor v1, v2, v3
respectively, and u2 has another remaining neighbor v′2 (these vertices are not necessarily
distinct).

We first examine the case where v13 /∈ S.
If v1 = v3, we can denote this vertex by v′13. If u2 does not have v13 or v′13 as a remaining

neighbor, it is lone-settled by Claim 4.7.1 (p. 127), a contradiction with the hypothesis on
u2; so one of v13, v′13 is also a remaining neighbor of u2. By planarity, v13, v′13 cannot both
be remaining neighbors of u2. So let us say that v13 is not a remaining neighbor of u2,
that the vertices u1, u2, u3 have a common remaining neighbor v123, and that v2 6= v123.
Since u2 is unsettled, v2, v123 are adjacent and this is configuration R4.

Now let us take a look at the case where v1 6= v3. We distinguish between the case
where v13 is a shared remaining neighbor of u1, u2, u3 or not.
• v13 is also a remaining neighbor of u2, and we call it v123. If w.l.o.g. v1 = v2, then

this case is equivalent to the previous one, by swapping u2 and u3; hence we assume
that v1, v2, v3 are pairwise distinct. If one of v1, v2, v3 is not adjacent to v123, then its
special vertex is lone-settled, a contradiction; so all three of v1, v2, v3 are adjacent to
v. There are three CD1 configurations on (u1, u2), (u1, u3), (u2, u3), since by planarity
and property A v1, v2, v3 are disjoint from S. Each of these configurations forms a
CDa or CDb pattern by property C, so the three paths u1 ∼ u2, u1 ∼ u3, u2 ∼ u3 have
length 1. Then {u1, u2, u3} is a 3-cut in G that separates two neighbors of u1, a
contradiction to the almost 4-connectivity of G w.r.t. the special vertices.
• v13 is not a remaining neighbor of u2. Since by Claim 4.7.1 (p. 127) u2 has a

remaining neighbor in common with u1 or u3, we can assume w.l.o.g. that v1 = v2
and we call this vertex v12.
First, assume v′2 = v3 and call it v23. Since u1, u2, u3 are unsettled, the graph con-
tains the edges v13v23, v23v12, v12v13. Thus, the three CD1 configurations on (u1, u2),
(u1, u3) and (u2, u3) are all CDa patterns by property C. Thus the three paths be-
tween u1, u2, u3 all have length 1, which is again a contradiction to the almost
4-connectivity of G w.r.t. the special vertices.
Now assume v′2 6= v3. Due to u1, u2, u3 being unsettled, the graph contains the edges
v13v3, v13v12, v12v

′
2. By planarity, there is at most one edge among {v13v′2, v12v3}, so

we can assume w.l.o.g. that v12v3 is a non-edge and in this case we have configuration
R5.

We can now examine the case where v13 ∈ S.
By property A, v13 necessarily belongs to u2 ∼ u4, thus u2 cannot have it as a remaining

neighbor by property A. The vertex u2 must be involved in the close problem, so it is
adjacent to v1, v3, or both.

First assume u2 is adjacent to both v1, v3. Since u1, u2, u3 are unsettled, we need to
have the edges v1v3, v1v13, v3v13, otherwise one of them is a settled CV pattern. However,
in this case {v13, v1, v3, u2, (u1 = u3)} form a K5-minor, by contracting the path u1 ∼ u3
to a vertex, a contradiction with the planarity of G.

So now we assume w.l.o.g. that u2 is adjacent to v3 but not to v1: we say that v3 = v′2
and we call it v23. Since u2, u3 are unsettled, we need the edges v2v23 and v13v23. But
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then this is a CX3 configuration, which contradicts property C of the subdivision. This
concludes the cases of 3 special vertices involved in the close problem.

Let us finally examine the cases where all four special vertices are involved in one or
two close problems. By definition, there are no distant problems in S.

For a special vertex to cause a close problem, it needs to share some of its remaining
neighbors with another special vertex. Two cases may occur: either there are two inde-
pendent close problems each involving two special vertices, or there is one close problem
involving all four special vertices. We start with the first case: u1, u2 are involved in
a close problem, as well as u3, u4, but the remaining neighbors of {u1, u2} and those of
{u3, u4} are disjoint. We examine all combinations of cases:
• u1, u2 share exactly one remaining neighbor v12; u3, u4 share exactly one remain-

ing neighbor v34. For all special vertices to be unsettled, we assume that the other
remaining neighbors v1, v2 of u1, u2 are adjacent to v12, and the other remaining
neighbors v3, v4 of u3, u4 are adjacent to v34. If v12, v34 /∈ S, then none of v1, v2, v3, v4
can belong to S, otherwise by property A the graph contains a redirection config-
uration CX3, forbidden by property C. So this is configuration R6. By planarity, if
one of v12, v34 belongs to S, then the other one does too. If they both belong to S,
this is configuration R3.
• u1, u2 share two remaining neighbors v12, v′12; u3, u4 share exactly one remaining

neighbor v34. Since u3, u4 are unsettled, their other remaining neighbors v3, v4 are
adjacent to v34. If none of v12, v′12 belongs to S, then neither do v3, v4, v34 by pla-
narity. This is again configuration R6. Now if say v12 belongs to S, it belongs to
u3 ∼ u4 by property A, and then by planarity v34 belongs to the path u1 ∼ u2.
Thus, by planarity, v′12 must also belong to S. This is once more configuration R3.
• u1, u2 share two remaining neighbors v12, v′12; u3, u4 share two remaining neighbors
v34, v

′
34. Using the same argument, either none of v12, v′12, v34, v′34 belong to S, or

they all do. In the former case this is again configuration R6, in the latter this is
configuration R3.

This concludes the case with two independent close problems. Let us now assume
that all four special vertices are involved in the same close problem. Let us decompose
according to the case (P1 or P2) of the remaining neighbors of u1, u2.
• u1, u2 share two remaining neighbors v12, v′12. We note that if at least one of v12, v′12

belongs to S, then it is impossible by planarity and property A to have both u3, u4
involved. So v12, v′12 /∈ S. Assume w.l.o.g. that v12 is also a remaining neighbor of
u3, and call it v123. If u3, u4 share a remaining neighbor v34 (different from v123 by
planarity), then by property A if v34 ∈ S it can only belong to the path u1 ∼ u2, but
it is impossible in this case by planarity. Thus v34 /∈ S, and by planarity v34, v123
are not adjacent. But then u3 is a settled CV pattern, a contradiction. So u3, u4 do
not share a remaining neighbor. For u4 to be involved, it must have (by planarity)
v′12 as a remaining neighbor. This is configuration R7.
• u1, u2 share exactly one remaining neighbor v12, and each have another remaining

neighbor v1, v2, both adjacent to v12. We first assume that v12 /∈ S. If u3 has v1 as
a remaining neighbor, then by planarity v1, v2, v12 must belong to the region of the
graph delimited by the paths u1 ∼ u2, u2 ∼ u3, u1 ∼ u3, and none of v1, v2, v12 can
belong to S (by property A and planarity). It is then impossible for u4 to be involved
with the close problem. So necessarily u3 has v12 as a remaining neighbor, we call
it v123. By the same argument it is impossible for u4 to be involved without making
u3 a CV pattern, thus settled, a contradiction. So finally assume that v12 belongs
to S: by property A it belongs to u3 ∼ u4. We can assume w.l.o.g. that u3 has v1
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as a remaining neighbor (it cannot have v12 by property A). By an argument used
above, u3 cannot share a remaining neighbor with u4 without being a CV pattern,
so u4 has v2 as a remaining neighbor. This is again configuration R3.

This concludes the proof.

K4

2 vertices involved in a close problem:
u1, u2 share a r.n. v

v /∈ S
u1, u2 share only one r.n.: R1

u1, u2 share a r.n. v′

v′ /∈ S: impossible

v′ ∈ S: R2v ∈ S
u1, u2 share a r.n. v′; v′ /∈ S: see case v /∈ S
u1, u2 share a r.n. v′; v′ ∈ S: R3

u1 r.n. v1; u2 r.n. v2; v′1 6= v′2: R3, J4
3 vertices involved in a close problem: u1, u2, u3;
u1, u3 share a r.n. v13

v13 /∈ S
v1 = v3: R4

v1 6= v3: R5

v13 ∈ S: Impossible4 vertices involved
in close problems

Two independent close problems
each involving two vertices:
u1, u2 share one r.n. v12;
u3, u4 share one r.n. v34

v12, v34 /∈ S: R6

v12, v34 ∈ S: R3

One close problem
involving all four vertices

P2: u1, u2 share two r.n. v12, v′12: R7

P1: u1, u2 share one r.n. v12: R3

Figure 4.40: Close lemma: tree of K4 cases
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Let us conclude this chapter by proving Lemma 4.4.2 (p. 101) and using it to prove
Lemma 4.0.1 (p. 74).

Proof of Lemma 4.4.2 (p. 101). Let G be a planar graph with a (CII) configuration w.r.t.
a 4-family U , that admits a strong K-subdivision rooted on U . We prove that G contains
a subdivision composite configuration made up of a semi-subdivision S rooted on U and
a compatible mapping w.r.t. S.

By Lemma 4.5.5 (Distant lemma, p. 108), if G has at least 3 distant problems w.r.t. its
strong subdivision S, then it contains a configuration among {D1, D2, D3, D4}. Each of
these configurations is defined along with a semi-subdivision and a compatible mapping.

So let us assume G has at most 2 distant problems and no close problem w.r.t. S. By
Lemma 4.6.2 (Semi-distant lemma, p. 117), G admits a semi-distant configurations among
{J1, J2, J3, J4, J5, J6}, and we provided a semi-subdivision and a compatible mapping for
each of these configurations. If G has at most 2 distant problems and some close problems
w.r.t. S, then by Lemma 4.7.2 (Close lemma, p. 127), it contains a configuration among
{R1, R2, R3, R4, R5, R6, R7, R8, R9, J4}, again associated with a semi-subdivision and a
compatible mapping for each.

Proof of Lemma 4.0.1 (p. 74). Let G be a minimum counterexample. By Lemma 3.1.1
(p. 45), it does not contain a configuration (CI).

Assume that G contains a (CII) configuration w.r.t. a 4-family U . By Claim 4.3.3
(p. 98), G admits a strong K-subdivision S rooted on U . By Lemma 4.4.2 (p. 101), G
contains a semi-subdivision S ′ rooted on U and a compatible mapping w.r.t. S ′, which is
a contradiction by Lemma 4.4.1 (p. 99).

Lemma 2.6.2 (p. 42) ensues by combining Lemmas 3.1.1 (p. 45) and 4.0.1 (p. 74).

132





Chapter 5

The structure of minimum
counterexample is contradictory

We complete the proof of Theorem 2.6.1 with the following lemma:

Lemma 5.0.1. Every connected planar graph on at least 3 vertices contains a configura-
tion (CI) or (CII).

Lemmas 2.6.2 (p. 42) and 5.0.1 together guarantee that every connected planar graph
other than K3 and K−5 admits a good path decomposition – it is trivial to verify for
connected planar graphs on at most 2 vertices. To prove Lemma 5.0.1, we first need some
definitions and structural observations on planar graphs.

Given a planar graph G, a 1-contraction of G is an induced subgraphH of G on at least
2 vertices together with a vertex u1 ∈ V (H) such that all vertices have the same degree
in G and H, except possibly for u1. A graph H on at least 3 vertices is a 2-contraction of
G if there exists an edge u1u2 ∈ E(H) such that H \ u1u2 is a subgraph of G and every
vertex v 6∈ {u1, u2} satisfies dH(v) = dG(v). Additionally, there exists a (u1, u2)-path in
G with all internal vertices in V (G) \ V (H).

The damaged vertices of a p-contraction (p ∈ {1, 2}) are the vertices {u1}, {u1, u2}
above. Note that any induced subgraph of G (on at least 2 vertices) can be turned into
a 1-contraction by selecting an arbitrary vertex as u1. Note that a 1-contraction with
damaged vertex u1 can be turned into a 2-contraction by selecting an arbitrary neighbour
of u1 in H, unless the vertex u1 has no neighbour in H. Note also that any p-contraction
(p ∈ {1, 2}) of G is a minor of G hence is planar.

A 2-contraction H ′ of G is smaller than a 2-contraction H of G with damaged vertices
{u1, u2} if V (H ′) ( V (H) and each of u1 and u2 either does not belong to V (H ′) or is
a damaged vertex of H ′. We may simply refer to a smaller 2-contraction than H if the
damaged vertices of H are clear from context. A 2-contraction H of G is minimal if G
admits no smaller 2-contraction.

Claim 5.0.2. Let G be a connected planar graph. Any minimal 2-contraction of G either
contains a non-damaged vertex of degree at most 4 or is 3-connected.

Proof. Assume for a contradiction that H with damaged vertices u1, u2 is a counterexam-
ple to the statement: H is minimal, not 3-connected and every vertex in V (H) \ {u1, u2}
has degree at least 5 in H (hence in G). By definition of a 2-contraction, V (H) \ {u1, u2}
is non-empty. We note that it suffices to exhibit a 2-contraction H ′ of G smaller than H.

Since H is minimal, it is connected. Note that H is in fact 2-connected. Otherwise,
let x be a cut-vertex in H. There is a connected component C of H \{x} containing none
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of {u1, u2}. The graph G[C ∪ {x}] is a 1-contraction of G with damaged vertex x. Note
that C contains at least 5 vertices, as C is non-empty and every vertex in C has degree
at least 5 in G. We select an arbitrary neighbour y of x in C, and note that G[C ∪ {x}]
is a 2-contraction of G with damaged vertices x, y and u1, u2 6∈ C. This yields a smaller
2-contraction than H, a contradiction.

Therefore, H is 2-connected but not 3-connected. Let x1, x2 be a vertex cut ofH. Since
u1u2 ∈ E(H), u1 and u2 do not belong to different connected components of H \ {x1, x2}.
Let C be a connected component H \{x1, x2} that contains no ui. Since H is 2-connected,
there is a path between x1 and x2 whose internal vertices belong to V (H) \C. We obtain
a 2-contraction of G with damaged vertices {x1, x2} where each ui either does not belong
to it or is a damaged vertex, hence a contradiction.

Claim 5.0.3. Let H be a minimal 2-contraction of a planar graph G. Either H con-
tains a non-damaged vertex of degree at most 4, or there are four non-damaged vertices
{v1, v2, v3, v4} of degree 5 with respect to which H is almost 4-connected.

Proof. Assume that H does not contain any non-damaged vertex of degree 4 or less, and
let u1, u2 be the damaged vertices of H.

We first assume that H is 4-connected. Then it suffices to argue that there are four
vertices of degree 5 in V (H)\{u1, u2}. SinceH is 4-connected, we have dH(u1), dH(u2) ≥ 4.
By Euler’s formula, we have

∑
x∈V (H)(d(x)−6) ≤ −12, hence

∑
x∈V (H)\{u1,u2}(d(x)−6) ≤

−8. Since every non-damaged vertex of H has degree at least 5, the conclusion follows.
Therefore, we may assume the graph H is not 4-connected. Consider an embedding of

H where u1 and u2 lie on the outer-face. Since u1u2 ∈ E(H) and H is planar since it is a
2-contraction of G, such an embedding exists. For any vertex cut X of H that has size 3,
let p be the number of connected components in H \X. Consider the minor of H obtained
by contracting each connected component into a single vertex. Since H is 3-connected
(by Claim 5.0.2), every resulting vertex is adjacent to all three vertices in X, which yields
a K3,p-minor where p is the number of connected components. Since H is planar, there
is no K3,3-minor, hence p = 2. At most one of the two connected components of H \X
contains damaged vertices. If one of them contains damaged vertices, we let I(X) be the
connected component of H \X that does not contain damaged vertices and E(X) be the
connected component of H \ X that contains a damaged vertex. If neither component
contains damaged vertices, then u1, u2 ∈ X. Since H is 3-connected and u1, u2 belong to
the outer-face, there is exactly one connected component that contains no vertex of the
outer-face; We let I(X) be that component. Let E(X) be the other component. Observe
that E(X) contains at least one vertex of the outer-face.

Among all vertex cuts of H that have size 3, we select a vertex cut {x1, x2, x3} which
minimizes |I({x1, x2, x3})|. We first argue that C = I({x1, x2, x3}) contains at least four
vertices of degree 5. Indeed, since {x1, x2, x3} is minimal, every xi has at least 2 neighbors
in C. Hence by Euler’s formula on the graph C, we have

∑
x∈C(d(x)− 6) + 3× 2 ≤ −12.

Since every vertex in C has degree at least 5 in H, there are four non-damaged vertices
{v1, v2, v3, v4} in C that have degree 5 in H.

It remains to argue that H is almost 4-connected with respect to them. We show
that no 3-cut of H separates two vertices of X ∪ C. Observe that this proves the two
properties of almost 4-connectivity. Assume for a contradiction that there is a vertex
cut Y = {y1, y2, y3} such that two vertices z1, z2 ∈ X ∪ C are in different connected
components of H \ Y . Without loss of generality, consider z1 ∈ I(Y ) and z2 ∈ E(Y ).

Note that H[X ∪ C] is connected and z1, z2 ∈ X ∪ C. However, z1 and z2 are in
different connected components of H \Y . Since z1, z2 cannot be separated by a vertex cut
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contained in X ∪E(X), at least one of {y1, y2, y3}, say y1, belongs to C. Since {x1, x2, x3}
minimizes |I({x1, x2, x3})| over all vertex cuts of H of size 3, at least one of {y1, y2, y3},
say y3, belongs to E({x1, x2, x3}).

We consider two cases depending on the cardinal of {x1, x2, x3} ∩ I(Y ).
• Assume that I(Y ) contains exactly one vertex in {x1, x2, x3}, say x1.

If y2 ∈ E(X), then we claim that {x1, y1} is a 2-cut that separates z1 from z2, a
contradiction with the 3-connectivity of H. To prove it, we note that in Y ∪ I(Y ),
there is a path between z1 and each of {y1, y2, y3} whose internal vertices belong to
I(Y ). However, since {x1, x2, x3} is a vertex cut of H and neither x2 nor x3 belongs
to Y ∪ I(Y ), every path between z1 and y2 whose internal vertices belong to I(Y )
involves the vertex x1. Therefore, {x1, y1} separates z1 and y2, hence the conclusion.
So y2 ∈ X ∪C, and we now claim that {x1, y1, y2} is a vertex cut of H, by the same
argument: each path between z1 and y3 with internal vertices in I(Y ) involves x1.
Observe that it contradicts the choice of {x1, x2, x3}.
• Assume from now on that I(Y ) contains both x2 and x3, while x1 ∈ E(Y ). As

above, we argue that {y1, x2, x3} is a vertex cut of H, which contradicts the choice
of {x1, x2, x3}. For completeness, we include the adapted proof. We note that in
{x1, x2, x3} ∪ I({x1, x2, x3}), there is a path between z1 and each of {x1, x2, x3}
whose internal vertices belong to I({x1, x2, x3}). However, since Y is a vertex cut of
H and neither y2 nor y3 belongs to {x1, x2, x3}∪ I({x1, x2, x3}), every path between
z1 and x1 whose internal vertices belong to I({x1, x2, x3}) involves the vertex y1.
Therefore, {y1, x2, x3} separates z1 and x1, hence the conclusion.

We can now use Claim 5.0.3 to obtain Lemma 5.0.1 (p. 133).

Proof of Lemma 5.0.1. Let G be a non-empty connected planar graph which contains no
(CI) configuration. Let u1 be the only vertex with degree at most 4 in G if any, and
an arbitrary vertex otherwise. Note that since G is connected and contains at least 3
vertices, the graph G with damaged vertex u1 is a 1-contraction of G. Furthermore, the
vertex u1 has at least one neighbour u2, and the graph G with damaged vertices u1 and
u2 is a 2-contraction of G. Let H be a minimal 2-contraction of G that is either precisely
G with damaged vertices u1, u2 or smaller than it.

Every non-damaged vertex in H has the same degree in H and in G, and u1 is not
a non-damaged vertex in H. Therefore, Claim 5.0.3 applied to H yields that H is al-
most 4-connected w.r.t. a 4-family {v1, v2, v3, v4}. Hence G is almost 4-connected w.r.t.
{v1, v2, v3, v4}, as desired.
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Conclusion and further research

Half a century after being stated, Gallai’s conjecture is an enduring source of questioning
and exciting new developments for graph theory. Our proof of the conjecture on planar
graphs is certainly a significant milestone, and we hope that this new result brings more
people into studying the conjecture in the near future. The result on random graphs by
Glock, Kühn and Osthus (Theorem 2.2.5, p. 33) makes us rather optimistic about the
conjecture being true in the general case. The strong version of the conjecture stated by
Marthe Bonamy and Thomas J. Perrett [6] in 2016 provides a welcome emphasis on what
bound should be expected for a given graph. Not only did its floor bound greatly help us
in our endeavor, but its sharper requirements demonstrate a better understanding of the
problem, and prefigure more assured proof attempts in the future.

We shall mention that the proof of our main theorem not only proves the existence
of a good coloring of any planar graph, but implicitly describes an algorithm to obtain
such a coloring. Each reduction rule defined throughout Chapters 3 and 4 can indeed be
used to construct a good coloring inductively, and K3 and K−5 base cases can be treated
with the recoloring methods of Lemmas 3.2.2 (p. 64) and 4.4.1 (p. 99). The only step
of the proof we cannot certify is constructive is the acquisition of a K4-subdivision when
dealing with (CII) configurations. Yu’s proof [82] operates by minimum counterexample,
and is therefore likely to yield an algorithm. However, its apparent opacity calls for a
closer examination before asserting it with any kind of certainty. A possible solution to
this issue is to consider the search for a K4-subdivision or C4+-subdivision rooted on four
given special vertices as a special instance of the so-called k disjoint paths problem. For a
given graph G with n vertices and a set of k pairs (ui, vi) of vertices of G, this problems
asks for k internally-disjoint paths, each having a different pair (ui, vi) as ends. A result
by Ken-ichi Kawarabayashi, Yusuke Kobayashi and Bruce Reed [54] from 2012 provides
an algorithm solving this problem in time O(n2) for fixed k (in our case k = 6).

It is natural to ask for what extensions of our proof can be considered in the near
future. To this end, we examine how essential planarity is in the conduct of our proof.
The main lemma of Chapter 5 provides the final contradiction that allows us to conclude,
and is based on a fine use of Euler’s formula. This formula is essential to our proof, since
it basically restricts the problem to eliminating vertices of small degree from a minimum
counterexample, and lays out a strategy that is impossible to apply in the general case.
Note that the extension of Euler’s formula to a higher genus is well-known (for definitions
related to genus, we refer to [67]). It is often contemplated to generalize planarity-related
results to graphs embeddable on surfaces of higher genus, and even though Euler’s formula
is not in itself a barrier to such a generalization, this is not the case for Yu’s theorem. Just
like for the existence of a constructive algorithm, our use of this theorem as a black box is
a major obstacle to any immediate extension of our proof to a superclass of planar graphs.
One may want to consider a different kind of structure to link special vertices. Finally,
micro-arguments of planarity (such as “these vertices cannot be adjacent by planarity”)
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are used throughout the entirety of our proof. A proof attempt on a less restrictive class
may ask for an even more consequent case analysis than the present one. We may argue
that this approach has been pushed to the edge of what is reasonable, and the prospect of
a gargantuan case analysis for the general case of Gallai’s conjecture is quite unappealing.
If such an enterprise were to be pursued, it could be of great interest to automate the
various reductions in the likes of the proof of the Four-color theorem [70].

A more modest and encouraging extension we hope to tackle soon is the class of
K5-minor-free graphs. Wagner showed in 1937 how these graphs are the ones that are
constructed through successive clique-sums. More precisely, the 0-sum of two graphs
is their disjoint union, a 1-sum is obtained by identification of one vertex, a 2-sum is
obtained by identification of one edge, and possibly removing it, and a 3-sum identifies
the three edges of a triangle in both graphs, with possible removal of some of these edges.
Wagner proved [79] that the K5-minor-free graphs are the ones that are constructed
through successive 0-, 1-, 2- and 3-sums of planar graphs and the 8-vertex Wagner graph.

Figure 5.1: The Wagner graph

This construction thus defines an inductive structure of K5-minor-free graphs, with
many planar components, and we think that this class is a good candidate for a first
adaptation of our proof. By Wagner’s theorem, planar graphs are the graphs that are
K5-minor-free and K3,3-minor-free, and the class of K3,3-minor-free graphs has a similar
structure: a graph is K3,3-minor-free if and only if it is constructed through successive 0-,
1- and 2-sums of planar graphs and K5 [76].

The general case of Gallai’s conjecture does not seem to be reachable in the immediate
future. Indeed, very few is known about Gallai’s conjecture on dense graphs, as most of
the classes on which it was proved are rather sparse (including planar graphs). Apart
from the cases of complete and complete bipartite graphs [47], only the recent asymptotic
result of Girão, Granet, Kühn and Osthus [34] about sufficiently large graphs of linear
minimum degree touches on dense graphs. Local reductions like the ones from our proof
do not apply for vertices of large degree, and a different approach should be considered.
Would it be possible to solve the general case with a subtle combination of arguments
from the sparse and the dense cases?

In the meantime, we think that the most natural graph class on which Gallai’s conjec-
ture has not yet been confirmed is the class of bipartite graphs. This class may be a good
starting point to develop new techniques susceptible to be used on dense graph classes.
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